tìm STN a ,< hoặc =200 biết khi chia a cho STN b thì được thương là 4 và dư 35
tìm STN x sao cho x nhỏ hơn hoặc bằng 200 . bt rằng khi chia x cho STN y thì đc thương là 4 và dư 35
1, Khi chia một STN a cho 4, ta được số dư là 3 còn khi chia cho 9 ta được số dư là 5. Tìm số dư trong phép chia a cho 36
2, Khi chia một STN a cho một STN b ta được thương là 18 số dư là 24. Hỏi thương và số dư thay đổi thế nào thì SBC và SC giảm đi 6 lần
3, Tìm số dư trong phép chia sau:
\(a,2^{1000}:5\)
\(b,2^{1000}:25\)
Bài 1:
Theo đề bài ta có:
\(a=4q_1+3=9q_2+5\) (\(q_1\) và \(q_2\) là thương trong hai phép chia)
\(\Rightarrow\left[\begin{matrix}a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\\a+13=9q_2+5+13=9\left(q_2+2\right)\left(2\right)\end{matrix}\right.\)
Từ (1) và (2) suy ra: \(a+13=BC\left(4;9\right)\)
Mà \(Ư\left(4;9\right)=1\Rightarrow a+13=BC\left(4;9\right)=4.9=36\)
\(\Rightarrow a+13=36k\left(k\ne0\right)\)
\(\Rightarrow a=36k-13=36\left(k-1\right)+23\)
Vậy \(a\div36\) dư \(23\)
Câu 1
Theo bài ra ta có:
\(a=4q_1+3=9q_2+5\)(q1 và q2 là thương của 2 phép chia)
\(\Rightarrow a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\)
và \(a+13=9q_2+5+13=9.\left(q_2+2\right)\left(2\right)\)
Từ (1) và (2) ta có \(a+13\) là bội của 4 và 9 mà ƯC(4;9)=1
nên a là bội của 4.9=36
\(\Rightarrow a+13=36k\left(k\in N\right)\)
\(\Rightarrow a=36k-13\)
\(\Rightarrow a=36.\left(k-1\right)+23\)
Vậy a chia 36 dư 23
Bài 3:
\(a,2^{1000}\div5\)
Ta có:
\(2^{1000}=\left(2^4\right)^{250}=\overline{\left(...6\right)}^{250}=\overline{\left(...6\right)}\)
Vì a có tận cùng là 6
\(\Rightarrow2^{1000}\div5\) dư \(1\)
tìm số tự nhiên a bé hơn hoặc bằng 200. Biết rằng khi chia a cho số tự nhiên b thì được thương là 4 và dư 35.
a : b = 4 (dư 35)
=> a = 4b + 35 và b > 35
Vì a < 200 nên 4b + 35 < 200 => 4b < 165 => b < 42
Mà b > 35 nên b có thể bằng 36; 37 ; 38; 39; 40; 41
+) Nếu b = 36 thì a = 4.36 + 35 = 179
+) Nếu b = 37 thì a = 4.37 + 35 = 183
các trường hợp lại tương tự.
Tìm số tự nhiên a < hoặc = 200 biết rằng khi chia a cho số tự nhiên b thì được thương là 4 số dư là 35
a = b.4 + 35
=> b = (a-35)/4 ≤ (200 - 35)/4 = 165/4 < 168/4 = 42
Mặt khác: số dư là 35 => số chia b > 35
Vậy 35 < b < 42 => b có thể là 36; 37; 38; 39; 40; 41
Khi đó a sẽ lần lượt là (a = b.4 + 35): 179; 183; 187; 191; 195; 199
\(\text{a = b.4 + 35}\)
=> b = \(\frac{\text{(a-35)}}{4}\)\(\le\frac{\text{ (200 - 35)}}{4}\) = \(\frac{165}{4}\) < \(\frac{168}{4}\)\(\text{ = 42}\)
Mặt khác:\(\text{ số dư là 35}\) =>\(\text{ số chia b}\) >\(\text{ 35}\)
Vậy\(\text{ 35}\) < b < \(\text{42}\) => b có thể là \(\text{36; 37; 38; 39; 40; 41}\)Khi đó a sẽ lần lượt là (\(\text{a = b.4 + 35}\)):\(\text{ 179; 183; 187; 191; 195; 199 }\)
Theo đề bài ta có :
a : b = 4 ( dư 35 )
a = 4b + 35
Do a \(\le\)200 => 4b \(\le\)165
,<=> b < 165/4
Mặt khác, để a : b dư 35 thì b > 35
=> 35 < b < 41,25
=> b = 36 ; 37 ; 38 ; 39 ; 40 ; 41
b = 36 => a = 179
b = 37 => a = 183
b = 38 => a = 187
b = 39 => a = 191
b = 40 => a = 195
b = 41 => a = 199
Tìm STN a biết 200<a<300 và khi a chia cho 4 thì dư 3,chia cho 5 thì dư 4,chia cho 6 thì dư 5.
Tìm STN a bé hơn 200, biết rằng khi chia số a cho một số b thì ta đc thương là 4 và dư 35
tìm số tự nhiên a bé hơn hoặc bằng 200 biết rằng khi chia a cho số tự nhiên b thì thương là 4 và số dư là 35
a)Cho a;b thuộc N và (11a+2b) chia hết cho 12 . Chứng minh (a+34b) chia hết cho 12
b)Tìm stn x;y biết (x-3)(y+1)=7
c)Khi chia stn a cho các số : 5;7;11 thì được số dư lần lượt là 3;4;6. Tìm số a biết 100<a<200
Khi người ta chia stn cho 4 được dư là 3. Nếu chia stn này cho 5 thì thương giảm đi 2 đơn vị còn dư vẫn là 3 . Tìm stn đó.