CMR không tồn tại n thuộc N để n2+1=300000...000
cmr ko tồn tại n thuộc N để n^2 + 1 = 300.......0
CMR : ko tồn tại n thuộc N để n^2 +1=300......0
Giả sử tồn tại số tự nhiên n thoả mãn đề bài
Ta có:n2+1=300…00
Vì 300…00 chia hết cho 3
=>n2+1 chia hết cho 3
=>n2 chia 3 dư 2
Vì số chính phương chia cho 3 không có số dư là 2 (Vô lí)
Vậy không tồn tại số tự nhiên n
cmr: tồn tại k thuộc N ; k lớn hơn 1 để 10k-1 chia hết cho 19
a﴿ 10^ k ‐ 1 chia hết cho 19 => 10 k ‐ 1 = 19n ﴾n là số tự nhiên﴿
=> 10^ k = 19n + 1 => 10^ 2k = ﴾10^ k ﴿2 = ﴾19n +1﴿2 = ﴾19n +1﴿﴾19n+1﴿ = 361n 2 + 38n + 1
=> 10 2k ‐ 1 = 361n 2 + 38n + 1 ‐ 1 = 361n 2 + 38n chia hết cho 19 => 10 2k ‐ 1 chia hết cho 19
tk nha bạn
thank you bạn
(^_^)
1.CMR trong tất cả các số có 4 chữ số khác nhau được lập bởi các chữ số 1;2;3;4 không có 2 số nào mà 1 số chia hết cho 2 số còn lại
2.CMR (n-1).(n+2)+12 không chia hết cho 9 với mọi n thuộc N
3.CMR không tồn tại n thuộc N thỏa mãn 20142014+1 chia hết cho n3+2012n
cmr không tồn tại số tự nhiên n để n^2+2002 là số chính phương
CMR không tồn tại số tn n để n2 + 2002 là số chính phương
để n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
n2 chỉ có thể có các chữ số tận cùng là 0,1,4,5,6,9
Nên n2 + 2002 có các chữ số tận cùng lần lượt là 2;3;8;7;8;3
Mà số có tận cùng là các chữ số 2,3,7,8 ko là số chính phương.
Do đó: n2 + 2002 không là số chính phương với mọi n là STN.
CMR tồn tại số tự nhiên n thuộc N* để \(29^n\)có tận cùng là 00001
cmr: tồn tại n thuộc N sao cho A=\(\sqrt{n-1}\)+\(\sqrt{n+1}\) thuộc Q
cho phân số:
M=4/(n-2)(n-1) với n thuộc Z
a)với số nguyên n nào thì phân số M không tồn tại
b)viết tập hợp A các số nguyên n để phân số M tồn tại
c)tìm phân số M;biết n=-13;n=0;n=13