chứng minh rằng 2018 mũ 2006 trừ đi 2 mũ 2006 chia hết cho 17
Chứng minh :
A= 2006+2006 mũ 2 +2006 mũ 3+...+2006 mũ 10 chia hết cho 2007
A = 2006 + 20062 + 20063 + .... + 200610
A có số số hạng : ( 10 - 1 ) : 1 + 1 = 10 ssh . Ta chia A thành 5 cặp , mỗi cặp có 2 số .
=> A = ( 2006 + 20062 ) + ( 20063 + 20064 ) + .... + ( 20069 + 200610 )
A = 2006 . ( 1 + 2006 ) + 20063 . ( 1 + 2006 ) + .... + 20069 . ( 1 + 2006 )
A = 2006 . 2007 + 20063 . 2007 + ... + 20069 . 2007
A = 2007 . ( 2006 + 20063 + ... + 20069 )
=> A \(⋮\) 2007 ( đpcm )
chứng minh rằng 1+2+2 mũ 2+2 mũ 3+...............+ 2 mũ 2006 chia hết cho 7
Đặt A = 1 + 2 + 22 + ... + 22006
A = ( 1 + 2 + 22 ) + ( 23 + 24 + 25 ) + ... + ( 22004 + 22005 + 22006 )
A = 7 + 23(1+2+22) + ... + 22004(1+2+22)
A = 7.(23+24+....+22004) chia hết cho 7
1 + 2 + 22 + 23 + ... + 22006
= (1 + 2 + 22) + (23 + 24 + 25) + (26 + 27 + 28) + ... + (22004 + 22005 + 22006)
= (1 + 2 + 22) + 23.(1 + 2 + 22) + 26.(1 + 2 + 22) + ... + 22004.(1 + 2 + 22)
= 7 + 23.7 + 26.7 + ... + 22004.7
= 7.(1 + 23 + 26 + ... + 22004) chia hết cho 7
bài 1:cho A=5+5 mũ 2+5 mũ 3+...+5 mũ 2006
CMR:A chia hết cho 120.(cmr là chứng minh rằng)
bài 2:cho B=5+5 mũ 2+5 mũ 3+...+5 mũ 80.
CMR:B chia hết cho 30.
câu a nhóm 4 số lại(mũ liên tiếp)
câu b nhóm 4 số lại(mũ liên tiếp)
bạn ơi, bạn có thể giải chi tiết đc ko!rồi mình cho.
bài 1 cho S = 5+ 5 mũ 2 +5 mũ 3 +.... + 5 mũ 2005 +5 mũ 2006 chứng minh S chia hết cho 126
bài 2: cho S = 7+7 mũ 3 + 7 mũ 5 + 7 mũ 1997 + 7 mũ 1999
chứng minh S chia hết cho 35
1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)
= (5+52+..........+52003).126 ->S chia hết cho 126
2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)
= (7+...............+71997).50-> chia hết cho 5
= 7(1+72+.......+71998) -> chia hết cho 7
-> chia hết cho 35
Chứng minh 2 mũ 20 trừ 2 mũ 17 chia hết cho 7.
Ta có: 220 - 217
\(=\) 217.(23-1)
\(=\) 217.(8 - 1)
\(=\) 217.7
\(\Rightarrow\) 217.7 \(⋮\) 7
Bài 1: Chứng minh rằng:
a, 2017 mũ 2018 + 2019 mũ 2018 chia hết cho 10
b, 19 mũ 2005 + 11 mũ 2004 chia hết cho 10
a) Lập bảng
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... |
7n | 7 | 9 | 3 | 1 | 7 | 9 | 3 | 1 | ... |
9n | 9 | 1 | 9 | 1 | 9 | 1 | 9 | 1 | ... |
Ta có: 2018 : 4 = 504 (dư 2)
Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)
Vậy 20172018 + 20192018 chia hết cho 10
b) Làm tương tự như câu a)
Chứng minh :
17 mũ 17 trừ 17 mũ 16 chia hết cho 16
Ta có: \(17^{17}\)-\(17^{16}\)= \(17^{16}\cdot17-17^{16}\)= \(17^{16}\cdot\left(17-1\right)\)= \(17^{16}\cdot16\)chia hết cho 16
(6 mũ 2007 trừ 6 mũ 2006) trừ 6 mũ 2006
(62007 - 62006) - 62006
= 62007 - (62006 - 62006)
= 62007
Chứng minh rằng E=993 mũ 1999 trừ 557 mũ 1997 chia hết cho 10
Giúp vs đi
Ta có : 9931999=(9933)666*993=(....1)666*993=(....1)*993=....3
5571997=(5574)499*557=(....1)449*557=(....1)*557=....7
=>9931999+5571997=(....3)+(....7)=....0
Vì (....0) chia hết cho 10 nên 9931999+5571997 chia hết cho 10 (đpcm)
Mà bạn ơi phải là cộng mới đúng