Tìm GTNN
\(A=x^2+5y^2+4xy+zx+12\)
tìm gtnn của
a)A=x^2-3x
b)B=2x^2-x
c)C=5x^2+4y-4xy-4x
d)D=x^2+5y-4xy-6x+8y+12
Bạn cũng cần xem lại đề câu c nhé.
Tìm GTNN \(A=x^2+5y^2+4xy+2x+12\)
sai đề ko bn
nếu là \(x^2+5y^2+4xy+2y+12\)thì được
chứ như này tớ chịu
Tìm GTNN A=x2 + 5y2 + 4xy + 2x + 12
\(A=x^2+4xy+4y^2+2x+4y+1+y^2-4y+4+7\)
=\(\left(x+2y\right)^2+2\left(x+2y\right)+1+\left(y-2\right)^2+7\)
=\(\left(x+2y+1\right)^2+\left(y-2\right)^2+7\ge7\)
vậy \(MinA=7\)Tại \(\hept{\begin{cases}x+2y+1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=2\end{cases}}\)
tìm GTNN của biểu thức x^2+5y^2+9z^2-4xy-6yz+12
\(x^2+5y^2+9z^2-4xy-6yz+12\)
\(=\left(x^2-4xy+4y^2\right)+\left(y^2-6yz+9z^2\right)+12\)
\(=\left(x-2y\right)^2+\left(y-3z\right)^2+12\ge12\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y=0\\y-3z=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=3z\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=6z\\y=3z\end{cases}}\)
a) tìm gtnn của A = x/3+3/x-2
b) tìm gtnn của B= x^2-4xy+5y^2+2x-10y+17
TÌM GTNN của A= x^2+5y^2-4xy-2x-4y+5
\(A=x^2+5y^2-4xy-2x-4y+5=x^2-2x\left(2y+1\right)+\left(2y+1\right)^2+\left(y^2-8y+16\right)-12=\left(x-2y-1\right)^2+\left(y-4\right)^2-12\ge-12\)
\(minA=-12\Leftrightarrow\)\(\left\{{}\begin{matrix}x=9\\y=4\end{matrix}\right.\)
Tìm GTLN (hoặc GTNN)
a) (x2-6x+5)(x2-8x+12)+9
b) 4x2+5y2-4xy+12x-10y+17
Tìm gtnn
A=x^2 +y^2 +2x +6y +12
B= x^2 +5y^2 - 4xy+6x -14y +15
A = x2 + y2 + 2x + 6y + 12
A= ( x2 + 2x + 1) + ( y2 + 2.3y + 32) + 2
A = ( x + 1)2 + ( y + 3)2 + 2
Do : ( x + 1)2 lớn hơn hoặc bằng 0 với mọi x
( y + 3)2 lớn hơn hoặc bằng 0 với mọi x
--> ( x + 1)2 + 2 lớn hơn hoặc bằng 2 với mọi x
( y + 3)2 + 2 lớn hơn hoặc bằng 2 với mọi x
Vậy Amin = 2 khi và chỉ khi x = -1 ; y =-3
Tìm GTNN của M=x^2+5y^2+4xy+4y+11
\(M=\left(x^2+4xy+4y^2\right)+\left(y^2+4y+4\right)+7=\left(x+2y\right)^2+\left(y+2\right)^2+7\ge7\\ M_{min}=7\Leftrightarrow\left\{{}\begin{matrix}x+2y=0\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-2\end{matrix}\right.\)