\(\sqrt[3]{-216x^3y^3}\)
\(\sqrt[3]{-12.8x^6}.\sqrt[3]{0.04y^3}\)
Tính
tính : \(\sqrt[3]{-12,8x^6}.\sqrt[3]{0.04y^3}\)
1.tính
\(a.\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\)
\(b.\frac{\sqrt[3]{24}}{\sqrt[3]{3}}-\sqrt[3]{32}.\sqrt[3]{2}\)
\(c.4ab\sqrt[3]{\frac{27x^3y^6}{64a^{12}b^{15}}}\)
\(d.\frac{1}{xy^2}\sqrt[3]{-8x^3y^6}\)
Tính giá trị biểu thức B=xy^3-x^3y biết x=\(\frac{1}{\sqrt[3]{2}+2+\sqrt[3]{4}}\) và y=\(\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\)
đặt \(\sqrt[3]{2}\)=a \(\Rightarrow\)a3=2, ta có:
x=\(\frac{1}{a+a^2+a^3}\)=\(\frac{a-1}{a\cdot\left(a^3-1\right)}\)=\(\frac{a-1}{a}\)
y=\(\frac{6}{a^4-a^3+a^2}\)=\(\frac{6\cdot\left(a+1\right)}{a^2\left(a^3+1\right)}\)=\(\frac{2\left(a+1\right)}{a^2}\)=\(\sqrt[3]{2}\cdot\left(a+1\right)\)
THeo cách đặt thì tính được x,y. Sau đó thay vào B thì tính được bạn nhé
\(x=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\); \(y=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\).tính giá trị của A=\(xy^3-x^3y\)
Đặt \(a=2^{\frac{1}{3}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{a}{a^2+a+1}\\y=\frac{a}{a^2-a+1}\end{cases}}\)
\(A{=xy(y^2-x^2)\\=xy(y+x)(y-x)\\=\dfrac{a^2}{a^4+a^2+1}\dfrac{2a^3+2a}{a^4+a^2+1}\dfrac{2a^2}{a^4+a^2+1}\\=\dfrac{8a^2(a^2+1)}{(a+1)^6}\\=\dfrac{8a^2(a^2+1)}{(a^3+3a^2+3a+1)^2}\\=\dfrac{8a^2(a^2+1)}{9(a^2+a+1)^2}}\)
Vì \(\left(a-1\right)\left(a^2+a+1\right)=a^3-1=1\). khi đó
\(A=\dfrac{8}{9}a^2(a^2+1)(a-1)^2=\dfrac{8}{9}a^2(a^4-2a^3+a^2+a^2-2a+1)=\dfrac{8}{9}a^2(2a^2-3)=\dfrac{8}{9}(4a-3a^2)\)
cho x= \(\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\), y= \(\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\)
Tính \(xy^3-x^3y\)
Cho \(x=\frac{2\sqrt[3]{3}}{\sqrt[3]{9}+\sqrt[3]{3}+1};y=\frac{4\sqrt[3]{3}}{9-\sqrt[3]{3}+1}\)
Tính:\(P=\frac{x^3y+xy^3+6\sqrt[3]{3}}{\sqrt[3]{9}}\)
Cho \(x=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\) và \(y=\frac{6}{3\sqrt[3]{2}-2\sqrt[3]{4}}\) . Tính giá trị \(A=xy^3+x^3y\)
Tính: A=\(x^3y-xy^3\)
Biết: x=\(\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\)
y=\(\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\)
1.Rút gọn:
a.\(2\sqrt{3x}-\sqrt{48x}+\sqrt{108x}+\sqrt{3x}\)
b.\(2\sqrt{25xy}+\sqrt{5}\sqrt{45x^3y^3}-3y\sqrt{16x^3y}\)
c.\(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{12}{3-\sqrt{3}}\)
d.\(\frac{1}{\sqrt[]{3}-\sqrt{2}}-\frac{2}{\sqrt{3}+\sqrt{5}}-\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{7}+\sqrt{3}}\)