Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nga Phạm
Xem chi tiết
nguyen thi vang
9 tháng 10 2018 lúc 17:41

Căn bậc ba

Huong Bui
Xem chi tiết
Thăng Vũ
Xem chi tiết
lý canh hy
10 tháng 9 2018 lúc 20:55

đặt \(\sqrt[3]{2}\)=a \(\Rightarrow\)a3=2, ta có:

x=\(\frac{1}{a+a^2+a^3}\)=\(\frac{a-1}{a\cdot\left(a^3-1\right)}\)=\(\frac{a-1}{a}\)

y=\(\frac{6}{a^4-a^3+a^2}\)=\(\frac{6\cdot\left(a+1\right)}{a^2\left(a^3+1\right)}\)=\(\frac{2\left(a+1\right)}{a^2}\)=\(\sqrt[3]{2}\cdot\left(a+1\right)\)

THeo cách đặt thì tính được x,y. Sau đó thay vào B thì tính được bạn nhé

Hồ Minh Thành
Xem chi tiết
Thắng Nguyễn
10 tháng 11 2019 lúc 9:22

Đặt \(a=2^{\frac{1}{3}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{a}{a^2+a+1}\\y=\frac{a}{a^2-a+1}\end{cases}}\)

\(A{=xy(y^2-x^2)\\=xy(y+x)(y-x)\\=\dfrac{a^2}{a^4+a^2+1}\dfrac{2a^3+2a}{a^4+a^2+1}\dfrac{2a^2}{a^4+a^2+1}\\=\dfrac{8a^2(a^2+1)}{(a+1)^6}\\=\dfrac{8a^2(a^2+1)}{(a^3+3a^2+3a+1)^2}\\=\dfrac{8a^2(a^2+1)}{9(a^2+a+1)^2}}\)

Vì \(\left(a-1\right)\left(a^2+a+1\right)=a^3-1=1\). khi đó 

\(A=\dfrac{8}{9}a^2(a^2+1)(a-1)^2=\dfrac{8}{9}a^2(a^4-2a^3+a^2+a^2-2a+1)=\dfrac{8}{9}a^2(2a^2-3)=\dfrac{8}{9}(4a-3a^2)\)

Khách vãng lai đã xóa
pain six paths
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
Minh Tài
Xem chi tiết
Trung Nguyễn
Xem chi tiết
hoàng thiên
Xem chi tiết