Chứng minh rằng
a) Các số có dạng aa chia hết cho 11
b) Các số có dạng aaa chia hết cho 37
Chứng minh rằng
a) Các số có dạng aa chia hết cho 11
b) Các số có dạng aaa chia hết cho 37
a ) aaa=a.111=a.(3.37)
\(\Rightarrow\text{aaa ⋮ 37}\)
a) aa=11*a
=>aa chia hết cho 11
b)aaa=111*a=3*37*a
=>aaa chia hết cho 37
CHÚC BẠN HỌC TỐT!!!
Chứng tỏ rằng :
a) Các số có dạng aa chia hết cho 11
b) Các số có dạng aaa chia hết cho 37
c) Các số có dạng aaaaaa chia hết cho 37
d) Các số có dạng abcabc chia hết cho 11
e) Các số có dạng aaaaaa chia hết cho 7
a) aa = a.11 chia hết cho 11
b) aaa = 100.a+10 a+a = 111.a chia hết cho 37 (vì 111 chia hết cho 37)
c) aaaaaa = 111111.a chia hết cho 37 (vì 111111 chia hết cho 37)
d) abcabc = 100000a+10000b+1000c+100a+10b+c = 100100.a+10010b+1001c
ta thấy 100100.a chia hết cho 11 ( vì 100100 chia hết cho 11)
10010b chia hết cho 11 ( vì 10010 chia hết cho 11)
1001c chia hết cho 11 ( vì 1001 chia hết cho 11)
Vậy 100100.a+10010b+1001c chia hết cho 11 hay abcabc chia hết cho 11
e) C aaaaaa = 111111a chia hết cho 7 ( 111111 chia hết cho 7)
Chứng tỏ rằng
1/ các số có dạng aa chia hết cho 11
2/ các số có dạng aaa chia hết cho37
3/ các số có dạng aaaaaa chia hết cho 37
4/ Các số có dạng abcabc chia hết cho 11
5/ Các số có dạng aaaaaa chia hết cho 7
Hãy biểu diễn các số có dạng sau:
a. aaa
b.abab
c.aaaaaa
Chứng tỏ rằng:
aa chia hết cho 11
aaa chia hết cho 37
aaaaaa chia hết cho 37
a. aaa = a.111
b. abab = ab. 101
c. aaaaaa = a.111111
aa = a.11 chia hết cho 11 => aa chia hết cho 11
aaa = a.111 = a.3.37 chia hết cho 37 => aaa chia hết cho 37
aaaaaa = a.111111 = a.3003.37 chia hết cho 37 => aaaaaa chia hết cho 37.
Chứng tỏ rằng
a/Số có dạng aaa bao giờ cũng chia hết cho 37
b/Số có dạng aaa aaa bao giờ cũng chia hết cho 7
c/Số có dạng abcabc bao giờ cũng chia hết cho 11
a)aaa=a*111 mà 111=3*37 chia hết cho 37
b)aaa aaa=a*111 111 mà 111 111=3*7*11*13*37 chia hết cho 7
c)abc abc=abc*1001 mà 1001=7*11*13 chia hết cho 11.
* Chứng tỏ rằng:
a) Số có dạng aaa bao giờ cũng chia hết cho 37.
b) Số có dạng aaaaaa bao giờ cũng chia hết cho 3.
c) Số có dạng abcabc bao giờ cũng chia hết cho 13 và 11.
d) ( ab+ ba) chia hết 11
a ) aaa=a.111=a.(3.37)
=>aaa bao giờ cũng chia hết cho 37
b) aaaaaa=a.111111=a.(3.37037)
=> aaaaaa bao giờ cũng chia hết cho 3
c) abcabc=abc.1001=abc.(7.13.11)
=> abcabc bao giờ cũng chia hết cho 13;11
d) ab+ba=(10a+b)+(10b+a)=(10a+a)+(10b+b)=11a+11b
=> ab+ba chia hết cho 11
ủng hộ nha
a) aaa = 111a = 37 . 3 . a
b) aaaaaa = 111111a = 37037 . 3 . a
c) abcabc = 1001abc = 77.13 . abc
abcabc = 1001abc = 77.13.abc = 7 .11.13.abc
d) (ab + ba) = 10a + b + 10b + a =11a + 11b = 11.(a+b)
a) aaa = a x 100 + a x 10 + a =a x 111 =a x 3 x 37 chia hết cho 37
b) aaaaaa = a x 111 111 = a x 3037 x 3 cha hết cho 3
c) abc abc = abc x 1001 = abc x 11 x 13x 7 chia hết cho 11 và 13
d) (ab+ba) = ax10+b + b x10+a=11xa+11xa =11 x(a+b) chia hết cho 11
Chứng tỏ rằng
a)Số có dạng aaa luôn chia hết cho 37
b) Số có dạng aaa aaa luôn chia hết cho 7
a) Ta có : aaa = a x 111
= a x 37 x 3 \(⋮\)37
=> aaa \(⋮\)37 (đpcm)
b) Ta có : aaa aaa = a x 111 111
= a x 7 x 15 873 \(⋮\)7
=> aaa aaa \(⋮\)7 (đpcm)
số có dạng aaa hoặc aaaa chia hết cho 37
sô có dạng abcabc chia hết cho 13
aaa = a.100+a.10+a.1
= a.(100+10+1)
= a.111
Vì 111chia hết cho 37 nên suy ra số có dạng aaa hay aaaa chia hết cho 37
Chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37
Câu hỏi tương tự:
Chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37
Toán lớp 6Chứng minh phản chứng
Nguyễn Tiến Hải 08/10/2014 lúc 08:39
aaa= a x 111 = a x 3 x 37 luôn luôn chia hết cho 37
aa= a x 111 = a x 3 x 37 luôn luôn chia hết cho 37
=> nguyen truong giang sai rồi bạn ko thể nói aaa = 111 được vì có trường hợp aaa = a.111