Tìm GTNN và GTLN của tích xy với x, y là các số nguyên dương và x+y=2009
Cho tổng A=(x+y+z)-(t+h) trong đó x,y,z,t,h là các số nguyên khác nhau từ 1 đến 2009.Tìm GTLN và GTNN của A
Cho x,y,z là các số thực dương thỏa mãn: x^2+y^2+z^2=2.Tìm GTNN và GTLN của P=\(\dfrac{x}{2+yz}+\dfrac{y}{2+zx}+\dfrac{z}{2+xy}\)
Ta thấy
72
=
2
3
.
3
2
72=2
3
.3
2
nên a, b có dạng
{
�
=
2
�
3
�
�
=
2
�
.
3
�
{
a=2
x
3
y
b=2
z
.3
t
với
�
,
�
,
�
,
�
∈
N
x,y,z,t∈N và
�
�
�
{
�
,
�
}
=
3
;
�
�
�
{
�
,
�
}
=
2
max{x,z}=3;max{y,t}=2.
Theo đề bài, ta có
2
�
.
3
�
+
2
�
.
3
�
=
42
2
x
.3
y
+2
z
.3
t
=42
⇔
2
�
−
1
.
3
�
−
1
+
2
�
−
1
3
�
−
1
=
7
⇔2
x−1
.3
y−1
+2
z−1
3
t−1
=7 (*), do đó
�
,
�
,
�
,
�
≥
1
x,y,z,t≥1
TH1:
�
≥
�
,
�
≤
�
x≥z,y≤t. Khi đó
�
=
3
,
�
=
2
x=3,t=2. (*) thành:
4.
3
�
−
1
+
3.
2
�
−
1
=
7
4.3
y−1
+3.2
z−1
=7
⇔
�
=
�
=
1
⇔y=z=1
Vậy
{
�
=
24
�
=
18
{
a=24
b=18
(nhận)
TH2: KMTQ thì giả sử
�
≥
�
,
�
≥
�
x≥z,y≥t. Khi đó
�
=
3
,
�
=
2
x=3,z=2. (*) thành
4.
3
�
−
1
+
2.
3
�
−
1
=
7
4.3
y−1
+2.3
t−1
=7, điều này là vô lí.
Vậy
(
�
,
�
)
=
(
24
,
18
)
(a,b)=(24,18) hay
(
18
,
24
)
(18,24) là cặp số duy nhất thỏa yêu cầu bài toán.
Tìm GTLN cua tích xy với x, y là các số dương y\(\ge\)60 và x + y =100
áp dụng BDT cô si ta có
\(xy\le\frac{\left(x+y\right)^2}{4}=\frac{100^2}{4}\)
vậy Max của \(xy=\frac{100^2}{4}=2500\)
dấu = xảy ra khi x=y=50
Cho hai số thực dương x,y thõa mãn : x^4+y^4+1/xy=xy + 2
Tìm GTLN VÀ GTNN của P=xy
_Tìm x , y , z nguyên dương thỏa mãn xy + xz + yz = 3xyz
_Cho x , y là các số dương và x + y = z . Tìm GTNN của N=(1-4:x^2)(1-4:y)
Với x, y là các số dương và x + y + xy = 8
Tìm GTNN của biểu thức C = x² + y²
Ta có:x+y+xy=8
x+xy+y=8
x+xy+y+1=8+1=9
x.(1+y)+(1+y)=9
(1+y).(x+1)=9=3.3=1.9
Đến đây bn làm đc rùi đó,tk mk^-^
1.Cho x,y là những số nguyên dương, x+y=201, tìm gtln và gtnn của P=x(x2+y)+y(y2+x)
tìm GTLN và GTNN của tích \(xy\) biết \(x+y=2009\)
Tìm GTNN của A=xy+yz+xz-12xyz với x,y,z là các số dương và x+y+z=1
CM được BĐT : \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge9\)\(\Rightarrow\frac{yz+xy+xz}{xyz}\ge9\)
\(\Rightarrow xy+yz+xz-9xyz\ge0\)
\(\Rightarrow A\ge-3xyz\ge3.\left[-\left(\frac{x+y+z}{3}\right)^3\right]=3.\left(-\frac{1}{27}\right)=\frac{-1}{9}\)
Vậy GTNN của A là \(\frac{-1}{9}\)khi \(x=y=z=\frac{1}{3}\)