tìm x y thộc N* sao cho 2xy-1 chia hết cho (x-1).(y-1)
b) Tìm x, y thuộc N lớn hơn 1 thỏa mãn điều kiện : x+1 chia hết cho y, y+1 chiah ết cho x
c) Tìm a,b thộc N( a<b) biết BCNN(a, b)+ UCLN( a, b) =19
Tìm x,y nguyên duơng > 1 sao cho 2xy-1 chia hết (x-1)(y-1)
Tìm x,y nguyên dương x,y>1 sao cho 2xy-1 chia hết cho (x-1)*(y-1)
Tham khảo tại link sau:
Câu hỏi của trần trác tuyền - Toán lớp 9 | Học trực tuyến
a) Tìm x,y thuộc Z sao cho 2xy -4x= 11
b) Tìm sốc nguyên n thỏa mãn 2n - 1 chia hết cho n+1
b)\(2n-1⋮n+1\)\(\left(n\inℤ\right)\)
\(\Rightarrow2n+2-3⋮n+1\)
\(\Rightarrow2.\left(n+1\right)-3⋮n+1\)mà\(2.\left(n+1\right)⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n+1\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n\in\left\{-2;0;-4;2\right\}\)
Vậy \(n\in\left\{-2;0;-4;2\right\}\)
Chúc bạn học tốt !
tìm các số nguyên dương x, y sao cho 2xy-1 chia hết cho (x-1)(y-1)
Lời giải:
Ta thấy: $2xy-1\vdots (x-1)(y-1)$
\(\Rightarrow \left\{\begin{matrix} 2xy-1\vdots x-1\\ 2xy-1\vdots y-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2y(x-1)+2y-1\vdots x-1\\ 2x(y-1)+2x-1\vdots y-1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2y-1\vdots x-1\\ 2x-1\vdots y-1\end{matrix}\right.\)
Nếu $x=y$ thì $2x-1\vdots x-1\Rightarrow 2(x-1)+1\vdots x-1$
$\Rightarrow 1\vdots x-1\Rightarrow x-1=\pm 1\Rightarrow x=0; 2$. Mà $x$ nguyên dương nên $x=2\Rightarrow y=2$
Nếu $x>y$: Vì $x>y\geq 1$ nên $x\geq 2$.
Ta thấy: $2y-1-3(x-1)=2(y-x)+(2-x)< 0\Rightarrow 2y-1< 3(x-1)$
Mà $2y-1\vdots x-1$ và $2y-1$ lẻ nên $2y-1=x-1$
$\Rightarrow 2x-1=2(x-1)+1=2(2y-1)+1\vdots y-1$
$\Leftrightarrow 4(y-1)+3\vdots y-1$
$\Rightarrow 3\vdots y-1\Rightarrow y-1\in\left\{\pm 1;\pm 3\right\}$
$\Rightarrow $y\in\left\{2; 4\right\}$
$\Rightarrow x=4; x=8$ (tương ứng)
Nếu $x< y$: Hoàn toàn tương tự
Vậy..........
Bài 1:Cho a1,a2,....,a2018 thuộc Z
CMR:a1+a2+...+a2018 chia hết cho 30 khi và chỉ khi a1^5 + a2^5 +...+ a2018^5 chia hết cho 30\
Bài 2: Tìm x,y thuộc N* sao cho x+y+1 chia hết cho xy
Bài 3: tìm x,y thuộc N* sao cho y+1 chia hết cho x, x+1 chia hết cho y
Bài 4:Tìm x,y thuộc N* sao cho y+2 chia hết cho x, x+2 chia hết cho y
Bài 5: Tìm x,y thuộc N* sao cho 2x+1 chia hết cho y, 2y+1 chia hết cho x
Bài 6: CMR: Với mọi n thuộc Z ta có n^5 + 5n chia hết cho 6
Bài 7:CMR: Với mọi n thuộc Z ta có n(2n+7)(7n+1) chia hết cho 6
Giúp mình nhé, cảm ơn các bạn nhiều!!!
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
tìm x,y thuộc N*. Sao cho
x + 1 chia hết cho y và y + 1 chia hết cho x
Tìm x,y thuộc N sao cho y+1 chia hết cho x và x+1 chia hết cho y
cho mik lời giải với bạn. mik đag cần gấp
Tìm (x,y) thuộc N sao cho: y+1 chia hết cho x và x+1 chia hết cho y