cho tứ giác ABCD có AD=BC, các đường trung trực của AB và CD cắt nhau ở E, CMR: góc EAB = góc EDC
giúp toyyy
Tứ giác ABCD có AD=BC. Các đường trung trực của AB và CD cắt nhau tại E
Chứng minh rằng góc EAB= góc EDC
B1)Tứ giác ABCD có AD=BC, các tia DA và CB cắt nhau tại O. Gọi I, K theo thứ tự là trung điểm của AB, CD. Đường thẳng IK cắt các đường thẳng AD, BC theo thứ tự ở E,F. CMR; OEF là tam giác cân
B2) Hình thang ABCD (AB//CD) có AB=a, CD=b, BC= c, AD= d. Các tia phân giác của các góc A và D cắt nhau ở E. Các tia phân giác của các góc B và C cắt nhau ở F. Gọi M, N theo thứ tự là trung điểm của AD, BC.
a)CMR: 4 điểm M, E, F, N thẳng hàng
b) Tính các độ dài MN, MF, FN theo a,b,c,d
c) CMR: a+b= c+d thì E trùng với F
B3) Cho hình thang ABCD (AB//CD) có AB= AD+BC. CMR: các tia phân giác của góc C,D cắt nhau tại một điểm trên cạnh AB.
mk mới lên lớp 8 nên ko bít làm nhìn mún lòi mắt
Vậy Rộp Rộp Rộp, các bạn khác đang hỏi, bạn không trả lời mà đăng như thế lên làm gì ?
Cho tứ giác ABCD thỏa mãn góc DAC=DBC. AC cắt BD tại E. Các đường trung trực của AD và BC cắt nhau tại O. Giả sử rằng điểm O nằm bên trong tam giác EDC.
a)CMR góc ODA+OCA=ODB+OCB
b)CMR OA=OB=OC=OD
giúp mik với
Tứ giác ABCD có góc A + góc C = 180o. Các đường thẳng AD, BC cắt nhau ở M. Các đường thẳng AB, CD cắt nhau ở N. Phân giác của góc DMC cắt AB ở E, CD ở F. Phân giác của góc AND cắt BC ở H, AD ở G. Chứng minh EF và GH có trung điểm chung.
Cho tứ giác ABCD, biết 2 đường thẳng AD và BC cắt nhau ở E, 2 đường thẳng AB và CD cắt nhau ở F. Các tia phân giác góc E và góc F cắt nhau ở I. Tính góc EIF theo góc A và Góc C của tứ giác ABCD.
Xin ai giúp nhé
Tui Đang vội xin mội người giúp nhé! Cảm Ơn
Cho tứ giác ABCD, biết hai đường thẳng AD và BC cắt nhau ở E, hai đường thẳng AB và CD cắt nhau tại F. Các tia phân giác của góc E và góc F cắt nhau ở I. Tính góc EIF theo góc A và góc C của tứ giác ABCD
Gọi giao điểm của FI với BC là M . Góc EMF là góc ngoài đỉnh F của hai tam giác MBF và MIE , ta có :
\(\widehat{EMF}\)\(=\widehat{F_1}\)\(+\widehat{MBF}\)
\(\widehat{EMF}\)\(=\widehat{F_2}\)\(+\widehat{EIF}\)
Suy ra : \(\widehat{EIF}\)\(+\widehat{F_2}\)\(=\widehat{F_1}\)\(+\widehat{MBF}\)\(\left(1\right)\)
Gọi giao điểm của EI với CD là N
Chứng minh tương tự , ta có :
\(\widehat{EIF}\)\(+\widehat{F_2}\)\(=\widehat{NDF}\)\(+\widehat{E_1}\)\(\left(2\right)\)\(...\)
Xin lỗi , mình chỉ biết giải đến đấy
camun bn nhiu
Cho tứ giác ABCD có các đường chéo AC và BD cắt nhau ở O và AD vg góc với AC , BD vg góc với BC. Gọi E là giao điểm của EO và CD. Gọi d là đường thẳng đi qua trung điểm EO và CD a) C/m : d là đường trung trực của đoạn AB
a. Dễ thấy AEM F là hình chữ nhật => AE = FM
Dễ thấy tg DFM vuông cân tại F => FM = DF
=> AE = DF => tg vuông ADE = tg vuông DCF ( AE = DF; AD = DC) => DE = CF
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC)
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2)
Gọi H là giao điểm của BF và DE
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H
c) Dễ thấy AE + EM = AE + EB = AB = không đổi
(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F)
Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
a. Dễ thấy AEM F là hình chữ nhật => AE = FM
Dễ thấy tg DFM vuông cân tại F => FM = DF
=> AE = DF => tg vuông ADE = tg vuông DCF ( AE = DF; AD = DC) => DE = CF
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC)
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2)
Gọi H là giao điểm của BF và DE
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H
c) Dễ thấy AE + EM = AE + EB = AB = không đổi
(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F)
Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD
Cho tứ giác ABCD, biết hai đường thẳng AD và BC cắt nhau ở E, hai đường thẳng AB và CD cắt nhau tại F. Các tia phân giác của góc E và góc F cắt nhau ở I. cmr nếu GÓC BAD=130 BCD=50 THI IE VUÔNG IF
cho tứ giác ABCD, biết 2 đường thẳng AD và BC cắt nhau tại E, hai đường thẳng AB và CD cắt nhau ở F. Các phân giác của góc E và góc F cắt nhau ở I.
Tính gisc EIF theo góc A và góc C của tứ giác ABCD