Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tran duong bac
Xem chi tiết
trung Nguyen Thanh
Xem chi tiết
Trình Mai Văn
Xem chi tiết
Phạm Trọng Mạnh
Xem chi tiết
Đinh Phương Linh
Xem chi tiết
pham trung thanh
19 tháng 11 2017 lúc 10:34

Bạn nhân 4 lên rồi tách ra hằng đẳng thức

Phúc
19 tháng 11 2017 lúc 10:48

Ta có 

A=x2+xy+y2-3x-3y+2016

=>4A=4x2+4xy+y2 -6(2x+y) + 9 + 3(y2-2y+1) +8052

         =(2x+y)2-6(2x+y)+9 + 3(y-1)2 +8052 

        =(2x+y-3)2+3(y-1)2+8052>= 8052

     =>A>=2013

Dấu bang xay ra khi x=y=1

Trịnh Quỳnh Nhi
19 tháng 11 2017 lúc 10:50

Ta có A= x2+xy+y2+3x-3y+2016

=> 2A= 2x2+2xy+2y2+6x-6y+4032

=> 2A=(x2+2xy+y2)+(x2+6x+9)+(y2-6y+9)+ 4014

=> 2A= (x+y)2+ (x+3)2+(y-3)2+4014

=> 2A >= 4014=> A>=2007

Dấu "=" xảy ra khi x=-3; y=-3

Dương Thảo Nhi
Xem chi tiết
_Guiltykamikk_
22 tháng 7 2018 lúc 15:54

Đặt  \(A=x^2+y^2+xy+3x+3y+2018\)

\(4.A=4x^2+4y^2+4xy+12x+12y+8072\)

\(4.A=\left(4x^2+4xy+y^2\right)+3y^2+12x+12y+8072\)

\(4.A=\left[\left(2x+y\right)^2+2\left(2x+y\right).3+9\right]+3\left(y^2+2y+1\right)+8060\)

\(4.A=\left(2x+y+3\right)^2+3\left(y+1\right)^2+8060\)

Mà  \(\left(2x+y+3\right)^2\ge0\forall x;y\)

       \(\left(y+1\right)^2\ge0\forall y\)\(\Rightarrow3\left(y+1\right)^2\ge0\forall y\)

\(\Rightarrow4.A\ge8060\)

\(\Leftrightarrow A\ge2015\)

Dấu "=" xảy ra khi : 

\(\hept{\begin{cases}2x+y+3=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}\)

Vậy ...

Huỳnh phương Khuê
Xem chi tiết
Minh Nguyễn Cao
Xem chi tiết
_Guiltykamikk_
8 tháng 8 2018 lúc 18:57

\(A=x^2+y^2+xy-3x-3y+2006\)

\(4A=4x^2+4y^2+4xy-12x-12y+8024\)

\(4A=\left(4x^2+4xy+y^2\right)+3y^2-12x-12y+8024\)

\(4A=\left[\left(2x+y\right)^2-2\left(2x+y\right).3+9\right]+3\left(y^2-2y+1\right)+8012\)

\(4A=\left(2x+y-3\right)^2+3\left(y-1\right)^2+8012\)

Mà  \(\left(2x+y-3\right)^2\ge0\forall x;y\)

      \(\left(y-1\right)^2\ge0\forall y\)\(\Rightarrow3\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow4A\ge8012\)

\(\Leftrightarrow A\ge2003\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}2x+y-3=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Vậy  \(A_{Min}=2003\Leftrightarrow x=y=1\)

The Anh Nguyen
Xem chi tiết
hoàng thùy linh
Xem chi tiết