Cho các số thực a,b,m thỏa mãn:a+b=2m và ab=m2.Chứng tỏ rằng a=b
cho các số thực a, b ,m thỏa mãn : a+b=2m và ab=m2 chứng tỏ rằng a=b giải hộ mink nha thank nhìu
Cho a,b,c là các số thực dương thỏa mãn:a+b+c=2020
chứng minh rằng:\(\frac{ab}{c+2020}=\frac{bc}{a+2020}=\frac{ac}{b+2020}\le5050\)
Cho a,b,c là số thực dương thỏa mãn:a+b+c=1
Chứng minh rằng:\(\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{c+ab}{a+b}\ge2\)
\(VT=\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ca}{c+a}+\dfrac{c\left(a+b+c\right)+ab}{a+b}\)
\(VT=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{c+a}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\)
Ta có:
\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{c+a}\ge2\left(a+b\right)\)
Tương tự: \(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\left(a+c\right)\)
\(\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\left(b+c\right)\)
Cộng vế với vế:
\(\Rightarrow VT\ge2\left(a+b+c\right)=2\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
1. Cho các số nguyên a, b, c, d thỏa mãn: a + b = c + d; ab + 1 = cd
Chứng tỏ rằng: c = d
2. Có tồn tại cặp số nguyên (a; b) nào thỏa mãn đẳng thức sau:
a) -252a + 72b = 2013
b) 512a - 104 = -2002
3. Cho m và n là các số nguyên dương:
A = \(\frac{2+4+6+...+2m}{m}\)
B = \(\frac{2+4+6+...+2n}{n}\)
Biết A<B, hãy so sánh m và n
4. Cho a, b, c, d thuộc Z thỏa mãn: a - ( b + c ) = d. Chứng tỏ rằng: a - c = b + d
Cho a,b,c là các số dương thỏa mãn:
a+ab+b=3 ; b+bc+c=5 và c+ac+a=15. Tính M=a+b+c
Đề đúng không em nhỉ?
Đề bài thế này vẫn tính được a;b;c, nhưng số rất xấu (căn thức, lớp 7 chưa học)
Biểu thức thứ hai: \(b+bc+c=5\) phải là \(b+bc+c=8\) hoặc 3; 15; 24; 35; 48... gì đó mới hợp lý, nghĩa là cộng thêm 1 phải là 1 số chính phương
Cho a,b,c là các số thực thỏa mãn:a2+b2+c2 =1.Chứng minh : abc+2.(1+a+b+c+ab+bc+ca) > 0
Cho a,b là các số thực dương thỏa mãn:a+b=4
Chứng minh rằng: \(\left(1+a+\frac{1}{a}\right)3^{ }^{ }^{ }+\left(1+b+\frac{1}{b}\right)3^{ }^{ }^{ }\ge\frac{343}{4}\)
cho các số thực a, b,c thỏa mãn:a+b+c=6 và 0<a,b,c<4. Giá trị lớn nhất của P=a2+b2+c2+ab+ac+bclà:?
cho các số a,b,c khác 0 thỏa mãn:a+b+c=a^2+b^2+c^2 =1 và x:y:z=a:b:c. Chứng minh rằng (x+y+z)^2=x^2+y^2+z^2
bạn nào lm đúng mk tick cho