a/b=b/c=c/a và a+b+c khác 0 . tính giá trị biểu thức
P=a^2*b^3*c^2015/a^2013
Cho a^3 + b^3 + c^3 = 3abc và a+b+c khác 0 . Tính giá trị biểu thức A=(a^2+2*b^2+6*c^2)/(a+b+c)^2 + 2015
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Mà \(a+b+c\ne0\left(gt\right)\)
\(\Leftrightarrow a=b=c\)
Do đó:
\(A=\frac{a^2+2b^2+6c^2}{\left(a+b+c\right)^2}+2015=\frac{a^2+2a^2+6c^2}{\left(a+a+a\right)^2}+2015=\frac{9a^2}{9a^2}+2015=1+2015=2016\)
Biết a/b=b/c=c/a(a khác 0,b khác 0,d khác 0). tính giá trị biểu thức a^670+b^672+c^673/a^2015
ta có :\(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(\dfrac{c}{a}\)=\(\dfrac{a+b+c}{b+c+a}\)=1
*\(\dfrac{a}{b}\)=1 =>a=b
*\(\dfrac{b}{c}\)=1 =>b=c
*\(\dfrac{c}{a}\)=1 =>c=a
=>a=b=c
=>\(a^{670}\)+\(b^{672}\)+\(c^{673}\)/\(a^{2015}\)=\(a^{2015}\)/\(a^{2015}\)=1
nhớ like nha
cho a,b,c khác không và đôi một khác nhau thõa mãn a^2(b+c)=b^2(a+c)=2013 . tính giá trị biểu thức H=c^2(a+b)
Cho a,b,c là các số thực khác 0 thỏa mãn: \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}-\frac{a^2+b^3+c^3}{abc}=2\)
Tính giá trị của biểu thức \(A=\left(\left(a+b\right)^{2013}-c^{2013}\right)\left(\left(b+c\right)^{2013}-a^{2013}\right)\left(\left(c+a\right)^{2013}-b^{2013}\right)\)
biết a/b=b/c=c/a với a,b,c khác 0.tính giá trị biểu thức p=a mũ 670 nhan b mũ 672 nhân c mũ 673 và chia cho 2015
Cho a,b,c , (a+b+c) là các số thực khác 0 thỏa mãn các điều kiện:
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{cases}}\)
Tính giá trị biểu thức A=a2013+b2013+c2013
cho a,b,c thỏa mãn a+b+c=1 và a2 + b2+c2=1 và a3+b3+c3=1 tính giá trị của biểu thức P=a2013+b2014+c2015
Cho a,b,c là 3 số thực khác không thỏa mãn:
\(\hept{\begin{cases}a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\\a^{2013}+b^{2013}+c^{2013}=1\end{cases}}\)
Hãy tính giá trị của biểu thức: \(Q=\frac{1}{a^{2013}}+\frac{1}{b^{2013}}+\frac{1}{c^{2013}}\)
\(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\)
=>\(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=>a=-b hoặc a=-c hoặc b=-c (1)
=>a=1 hoăc b=1 hoặc c=1 (2)
từ 1 và 2 => Q=1
Cho a;b;c khác không và đôi một khác nhau thỏa mãn a^2 . (b+c)= b^2.(a+c)=2013 .Tính giá trị biểu thức H=c^2.(a+b)