Những câu hỏi liên quan
bá đạo
Xem chi tiết
Tạ Duy Phương
25 tháng 12 2015 lúc 21:10

Ta cm được: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(A=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)

Min A = 1/3 khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Trần Thị Duyên
Xem chi tiết
Lê Chí Cường
Xem chi tiết
Thắng Nguyễn
28 tháng 11 2016 lúc 21:27

Áp dụng BĐT AM-GM ta có:

\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}\cdot\frac{y+3z}{16}\cdot\frac{1}{4}\cdot\frac{1}{4}}=x\)

\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\).Tương tự ta có:

\(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{x+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)

Cộng theo vế ta có:

\(P\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}\cdot3-\frac{3}{2}=\frac{3}{4}\)

Dấu "=" khi x=y=z=1

Phú Lê Hoàng
28 tháng 11 2016 lúc 21:53

xin cho mình hỏi sao x+y+z lại\(\ge\)xy+yz+zx vậy

Lê Chí Cường
28 tháng 11 2016 lúc 22:07

Áp dụng bất đẳng thức AM-GM, ta có: \(a^2+b^2+c^2\ge ab+bc+ca\)

<=>\(a^2+b^2+c^2+2ab+2bc+2ca\ge3\left(ab+bc+ca\right)\)

<=>\(\left(a+b+c\right)^2\ge9\)

<=>\(a+b+c\ge3\)

Bình Nguyễn Thái
Xem chi tiết
Bùi Hữu Vinh
Xem chi tiết
Yen Nhi
5 tháng 1 2021 lúc 23:17
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

Khách vãng lai đã xóa
dinh huong
Xem chi tiết
Full Moon
Xem chi tiết
Đen đủi mất cái nik
12 tháng 10 2018 lúc 22:53

đầu tiên ta chứng minh với x,y,z,t bất kì thì:

\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\) (*)

thật vậy bđt (*) tương đương với: 

\(x^2+y^2+z^2+t^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge x^2+2xz+z^2+y^2+2yt+t^2\)

\(\Leftrightarrow\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge xz+yt\)

bđt trên đúng vì theo bđt bunhia cốp xki

\(\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge\sqrt{\left(xz+yt\right)^2}=|xz+yt|\ge xz+yt\)

Áp dụng (*) ta có:

\(P=\sqrt{4+x^4}+\sqrt{4+y^4}+\sqrt{4+z^4}\ge\sqrt{\left(2+2\right)^2+\left(x^2+y^2\right)^2}+\sqrt{4+z^2}\)

\(\ge\sqrt{\left(2+2+2\right)^2+\left(x^2+y^2+z^2\right)^2}=\sqrt{36+\left(x^2+y^2+z^2\right)^2}\)

Ta có:

\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2+\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Rightarrow3x^2+3y^2+3z^2+3\ge2x+2y+2z+2xy+2yz+2zx=2.6=12\)

\(\Rightarrow x^2+y^2+z^2\ge3\Rightarrow P\ge\sqrt{36+3}=3\sqrt{5}\)

Dấu bằng xảy ra khi x=y=z=1

MH van Stomm
Xem chi tiết
Trần Bình
Xem chi tiết