Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn An
Xem chi tiết
Khanh7c5 Hung
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 0:39

\(\left|mx-3\right|=mx-3\Leftrightarrow mx-3\ge0\) \(\Rightarrow\left[{}\begin{matrix}x\ge\dfrac{3}{m}\left(m>0\right)\\x\le\dfrac{3}{m}\left(m< 0\right)\end{matrix}\right.\)

\(x^2-4=0\Rightarrow x=\pm2\Rightarrow B=\left\{-2;2\right\}\)

\(B\backslash A=B\Leftrightarrow A\cap B=\varnothing\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{m}>2\left(m>0\right)\\\dfrac{3}{m}< -2\left(m< 0\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0< m< \dfrac{3}{2}\\-\dfrac{3}{2}< m< 0\end{matrix}\right.\)

Nguyễn Xuân Đình Lực
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 3 2022 lúc 15:53

\(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)+1}{x-2}\) hữu hạn \(\Rightarrow f\left(x\right)+1=0\) có nghiệm \(x=2\Rightarrow f\left(2\right)=-1\)

\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{f\left(x\right)+2x+1}-x}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{1}{\sqrt{f\left(x\right)+2x+1}+x}.\dfrac{\left(\sqrt{f\left(x\right)+2x+1}-x\right)\left(\sqrt{f\left(x\right)+2x+1}+x\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{1}{\left(x+2\right)\left(\sqrt{f\left(x\right)+2x+1}+x\right)}.\dfrac{f\left(x\right)+1-x\left(x-2\right)}{x-2}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{1}{\left(x+2\right)\left(\sqrt{f\left(x\right)+2x+1}+x\right)}.\left(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)+1}{x-2}-\lim\limits_{x\rightarrow2}\dfrac{x\left(x-2\right)}{x-2}\right)\)

\(=\dfrac{1}{4\left(\sqrt{4}+2\right)}.\left(a-2\right)=\dfrac{a-2}{16}\)

Thiên Lạc
Xem chi tiết
Lê Thị Thục Hiền
11 tháng 6 2021 lúc 15:45

\(E=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)

\(A=\left\{1;-4\right\}\)

\(B=\left\{2;-1\right\}\)

a) Với mọi x thuộc A đều thuộc E \(\Rightarrow A\subset E\)

Với mọi x thuộc B đều thuộc E \(\Rightarrow B\subset E\)

b) \(A\cap B=\varnothing\)

\(\Rightarrow E\backslash\left(A\cap B\right)=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)

\(A\cup B=\left\{-4;-1;1;2\right\}\)

\(\Rightarrow E\backslash\left(A\cup B\right)=\left\{-5;-3;-2;0;3;4;5\right\}\)

\(\Rightarrow E\backslash\left(A\cup B\right)\subset E\backslash\left(A\cap B\right)\)

dinh thi phuong
Xem chi tiết
Lê Bùi
19 tháng 8 2017 lúc 19:58

\(A\cap B=\left\{1\right\}\)

\(A\cup B=\left\{-2;-1;0;1;2\right\}\)

Quỳnh Anh
Xem chi tiết
Hồng Phúc
18 tháng 12 2020 lúc 21:50

a, \(A\cup B=(-4;5]\)

\(A\cap B=[-3;4)\)

\(A\backslash B=\left[4;5\right]\)

\(B\backslash A=\left(-4;-3\right)\)

b, \(A\cup B=\left(-3;7\right)\)

\(A\cap B=[1;2)\cup(3;5]\)

\(A\backslash B=\left[2;3\right]\)

\(B\backslash A=\left(-3;1\right)\cup\left(5;7\right)\)

c, \(A\cup B=\left[\dfrac{1}{2};3\right]\)

\(A\cap B=\left[1;\dfrac{3}{2}\right]\)

\(A\backslash B=[\dfrac{1}{2};1)\)

\(B\backslash A=(\dfrac{3}{2};3]\)

d, \(A\cup B=(-5;2]\cup(3;6]\)

\(A\cap B=\left\{0\right\}\cup[4;5)\)

\(A\backslash B=(0;2]\cup\left[-5;6\right]\)

\(B\backslash A=[-5;0)\cup\left(3;4\right)\)

vung nguyen thi
Xem chi tiết
vung nguyen thi
30 tháng 8 2017 lúc 16:48

Akai Haruma

Kinder
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2021 lúc 17:44

1.a.

\(\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)\ge m\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-10\right)\ge m\)

Đặt \(x^2+3x-10=t\ge-\dfrac{49}{4}\)

\(\Rightarrow\left(t+2\right)t\ge m\Leftrightarrow t^2+2t\ge m\)

Xét \(f\left(t\right)=t^2+2t\) với \(t\ge-\dfrac{49}{4}\)

\(-\dfrac{b}{2a}=-1\) ; \(f\left(-1\right)=-1\) ; \(f\left(-\dfrac{49}{4}\right)=\dfrac{2009}{16}\)

\(\Rightarrow f\left(t\right)\ge-1\)

\(\Rightarrow\) BPT đúng với mọi x khi \(m\le-1\)

Có 30 giá trị nguyên của m

Nguyễn Việt Lâm
5 tháng 3 2021 lúc 17:50

1b.

Với \(x=0\)  BPT luôn đúng

Với \(x\ne0\) BPT tương đương:

\(\dfrac{\left(x^2-2x+4\right)\left(x^2+3x+4\right)}{x^2}\ge m\)

\(\Leftrightarrow\left(x+\dfrac{4}{x}-2\right)\left(x+\dfrac{4}{x}+3\right)\ge m\)

Đặt \(x+\dfrac{4}{x}-2=t\) \(\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-6\end{matrix}\right.\)

\(\Rightarrow t\left(t+5\right)\ge m\Leftrightarrow t^2+5t\ge m\)

Xét hàm \(f\left(t\right)=t^2+5t\) trên \(D=(-\infty;-6]\cup[2;+\infty)\)

\(-\dfrac{b}{2a}=-\dfrac{5}{2}\notin D\) ; \(f\left(-6\right)=6\) ; \(f\left(2\right)=14\)

\(\Rightarrow f\left(t\right)\ge6\)

\(\Rightarrow m\le6\)

Vậy có 37 giá trị nguyên của m thỏa mãn

Nguyễn Việt Lâm
5 tháng 3 2021 lúc 17:56

2.

Xét với \(x\ge1\)

\(m\left(x+1\right)+3\left(x-1\right)-2\sqrt{x^2-1}=0\)

\(\Leftrightarrow m+3\left(\dfrac{x-1}{x+1}\right)-2\sqrt{\dfrac{x-1}{x+1}}=0\)

Đặt \(\sqrt{\dfrac{x-1}{x+1}}=t\Rightarrow0\le t< 1\)

\(\Rightarrow m+3t^2-2t=0\)

\(\Leftrightarrow3t^2-2t=-m\)

Xét hàm \(f\left(t\right)=3t^2-2t\) trên \(D=[0;1)\)

\(-\dfrac{b}{2a}=\dfrac{1}{3}\in D\) ; \(f\left(0\right)=0\) ; \(f\left(\dfrac{1}{3}\right)=-\dfrac{1}{3}\) ; \(f\left(1\right)=1\)

\(\Rightarrow-\dfrac{1}{3}\le f\left(t\right)< 1\)

\(\Rightarrow\) Pt có nghiệm khi \(-\dfrac{1}{3}\le-m< 1\)

\(\Leftrightarrow-1< m\le\dfrac{1}{3}\)

Only question
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 9 2020 lúc 21:30

\(A=\left[-3;3\right]\) ; \(B=(-\infty;-1]\cup[1;+\infty)\)

\(\Rightarrow A\cap B=\left[-3;-1\right]\cup\left[-1;3\right]\)

Khách vãng lai đã xóa
Quỳnh Anh
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2022 lúc 21:48

\(f^3\left(2-x\right)-2f^2\left(2+3x\right)+x^2g\left(x\right)+36x=0\) (1)

Thay \(x=0\Rightarrow f^3\left(2\right)-2f^2\left(2\right)=0\Rightarrow\left[{}\begin{matrix}f\left(2\right)=0\\f\left(2\right)=2\end{matrix}\right.\)

Đạo hàm 2 vế của (1):

\(\Rightarrow-3f^2\left(2-x\right).f'\left(2-x\right)-12f\left(2+3x\right).f'\left(2+3x\right)+2x.g\left(x\right)+x^2.g'\left(x\right)+36=0\)

Thay \(x=0\)

\(\Rightarrow-3f^2\left(2\right).f'\left(2\right)-12f\left(2\right).f'\left(2\right)+36=0\)

TH1: \(f\left(2\right)=0\Rightarrow36=0\) (ktm)

TH2: \(f\left(2\right)=2\)

\(\Rightarrow-3.2^2.f'\left(2\right)-12.2.f'\left(2\right)+36=0\Rightarrow f'\left(2\right)=1\)

\(\Rightarrow A=3.2+4.1=10\)