Tính tích phân của
\(\int\limits^e_1\dfrac{\cos\left(lnx\right)}{\cos\left(x\right)^2}dx\)
Áp dụng phương pháp tính tích phân, hãy tính các tích phân sau :
a) \(\int\limits^{\dfrac{\pi}{2}}_0x\cos2xdx\)
b) \(\int\limits^{\ln2}_0xe^{-2x}dx\)
c) \(\int\limits^1_0\ln\left(2x+1\right)dx\)
d) \(\int\limits^3_2\left|\ln\left(x-1\right)-\ln\left(x+1\right)\right|dx\)
e) \(\int\limits^2_{\dfrac{1}{2}}\left(1+x-\dfrac{1}{x}\right)e^{x+\dfrac{1}{x}}dx\)
g) \(\int\limits^{\dfrac{\pi}{2}}_0x\cos x\sin^2xdx\)
h) \(\int\limits^1_0\dfrac{xe^x}{\left(1+x\right)^2}dx\)
i) \(\int\limits^e_1\dfrac{1+x\ln x}{x}e^xdx\)
tính tích phân
\(\int\limits^e_1\left(x+\dfrac{1}{x}\right)\ln\left(x\right)dx\)
\(I=\int\limits^e_1xlnxdx+\int\limits^e_1\dfrac{lnx}{x}dx=I_1+I_2\)
Xét \(I_1\) , đặt \(\left\{{}\begin{matrix}u=lnx\\dv=xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{x^2}{2}\end{matrix}\right.\)
\(\Rightarrow I_1=\dfrac{x^2}{2}lnx|^e_1-\int\limits^e_1\dfrac{x}{2}=\dfrac{e^2}{2}-\dfrac{e}{2}+\dfrac{1}{2}\)
Xét \(I_2=\int\limits^e_1\dfrac{lnx}{x}dx=\int\limits^e_1lnx.d\left(lnx\right)=\dfrac{ln^2x}{2}|^e_1=\dfrac{1}{2}\)
\(\Rightarrow I=\dfrac{e^2}{2}-\dfrac{e}{2}+1\)
Tính các tích phân sau :
a) \(\int\limits^{\dfrac{\pi}{4}}_0\cos2x.\cos^2xdx\)
b) \(\int\limits^1_{\dfrac{1}{2}}\dfrac{e^x}{e^{2x}-1}dx\)
c) \(\int\limits^1_0\dfrac{x+2}{x^2+2x+1}\ln\left(x+1\right)dx\)
d) \(\int\limits^{\dfrac{\pi}{4}}_0\dfrac{x\sin x+\left(x+1\right)\cos x}{x\sin x+\cos x}dx\)
a)
Ta có \(A=\int ^{\frac{\pi}{4}}_{0}\cos 2x\cos^2xdx=\frac{1}{4}\int ^{\frac{\pi}{4}}_{0}\cos 2x(\cos 2x+1)d(2x)\)
\(\Leftrightarrow A=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos x(\cos x+1)dx=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos xdx+\frac{1}{8}\int ^{\frac{\pi}{2}}_{0}(\cos 2x+1)dx\)
\(\Leftrightarrow A=\frac{1}{4}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin x+\frac{1}{16}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin 2x+\frac{1}{8}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|x=\frac{1}{4}+\frac{\pi}{16}\)
b)
\(B=\int ^{1}_{\frac{1}{2}}\frac{e^x}{e^{2x}-1}dx=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\left ( \frac{1}{e^x-1}-\frac{1}{e^x+1} \right )d(e^x)\)
\(\Leftrightarrow B=\frac{1}{2}\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left | \frac{e^x-1}{e^x+1} \right |\approx 0.317\)
c)
Có \(C=\int ^{1}_{0}\frac{(x+2)\ln(x+1)}{(x+1)^2}d(x+1)\).
Đặt \(x+1=t\)
\(\Rightarrow C=\int ^{2}_{1}\frac{(t+1)\ln t}{t^2}dt=\int ^{2}_{1}\frac{\ln t}{t}dt+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
\(=\int ^{2}_{1}\ln td(\ln t)+\int ^{2}_{1}\frac{\ln t}{t^2}dt=\frac{\ln ^22}{2}+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{t}\end{matrix}\right.\Rightarrow \int ^{2}_{1}\frac{\ln t}{t^2}dt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|-\frac{\ln t+1}{t}=\frac{1}{2}-\frac{\ln 2 }{2}\)
\(\Rightarrow C=\frac{1}{2}-\frac{\ln 2}{2}+\frac{\ln ^22}{2}\)
d)
\(D=\int ^{\frac{\pi}{4}}_{0}\frac{x\sin x+(x+1)\cos x}{x\sin x+\cos x}dx=\int ^{\frac{\pi}{4}}_{0}dx+\int ^{\frac{\pi}{4}}_{0}\frac{x\cos x}{x\sin x+\cos x}dx\)
Ta có:
\(\int ^{\frac{\pi}{4}}_{0}dx=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|x=\frac{\pi}{4}\)
\(\int ^{\frac{\pi}{4}}_{0}\frac{x\cos xdx}{x\sin x+\cos x}=\int ^{\frac{\pi}{4}}_{0}\frac{d(x\sin x+\cos x)}{x\sin x+\cos x}=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\ln |x\sin x+\cos x|\)
\(=\ln|\frac{\pi\sqrt{2}}{8}+\frac{\sqrt{2}}{2}|\)
Suy ra \(D=\frac{\pi}{4}+\ln|\frac{\pi\sqrt{2}}{8}+\frac{\sqrt{2}}{2}|\)
Tính các tích phân sau :
a) \(\int\limits^1_0\left(y-1\right)^2\sqrt{y}dy\), đặt \(t=\sqrt{y}\)
b) \(\int\limits^2_1\left(x^2+1\right)\sqrt[3]{\left(z-1\right)^2}dz\), đặt \(u=\sqrt[3]{z-1}\)
c) \(\int\limits^e_1\dfrac{\sqrt{4+5\ln x}}{x}dx\)
d) \(\int\limits^{\dfrac{\pi}{2}}_0\left(\cos^5\varphi-\sin^5\varphi\right)d\varphi\)
e) \(\int\limits^{\pi}_0\cos^3\alpha\cos3\alpha d\alpha\)
Câu a)
Đặt \(y=\sqrt{t}\Rightarrow I_1=\int ^{1}_{0}(y-1)^2\sqrt{y}dy=\int ^{1}_{0}(t^2-1)^2td(t^2)\)
\(\Leftrightarrow I_1=2\int^{1}_{0}(t^2-1)^2t^2dt=2\int ^{1}_{0}(t^6-2t^4+t^2)dt\)
\(=2\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{t^7}{7}-\frac{2t^5}{5}+\frac{t^3}{3} \right )=\frac{16}{105}\)
b) Đặt \(u=\sqrt[3]{z-1}\Rightarrow z=u^3+1\Rightarrow I_2=\int ^{1}_{0}[(u^3+1)^2+1]u^2d(u^3+1)\)
\(\Leftrightarrow I_2=3\int ^{1}_{0}[(u^3+1)^2+1]u^4du=3\int ^{1}_{0}(u^{10}+2u^7+2u^4)du\)
\(=3\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{x^{11}}{11}+\frac{x^8}{4}+\frac{2x^5}{5} \right )=\frac{489}{220}\)
c) Ta có:
\(I_3=\int ^{e}_{1}\frac{\sqrt{4+5\ln x}}{x}dx=\int ^{e}_{1}\sqrt{4+5\ln x}d(\ln x)\)
Đặt \(\sqrt{4+5\ln x}=t\Rightarrow I_3=\int ^{3}_{2}td\left (\frac{t^2-4}{5}\right)=\frac{2}{5}\int ^{3}_{2}t^2dt=\frac{38}{15}\)
d)
Xét \(\int ^{\frac{\pi}{2}}_{0}\cos ^5xdx=\int ^{\frac{\pi}{2}}_{0}\cos ^4xd(\sin x)=\int ^{\frac{\pi}{2}}_{0}(1-\sin ^2x)^2d(\sin x)\)
\(=\int ^{1}_{0}(1-t^2)^2dt\)
Xét \(\int ^{\frac{\pi}{2}}_{0}\sin ^5xdx=-\int ^{\frac{\pi}{2}}_{0}\sin ^4xd(\cos x)=-\int ^{\frac{\pi}{2}}_{0}(1-\cos ^2x)^2d(\cos x)=\int ^{1}_{0}(1-t^2)^2dt\)
Do đó \(\int ^{\frac{\pi}{2}}_{0}(\cos ^5x-\sin ^5x)dx=0\)
e)
Có \(\int \cos ^3x\cos 3xdx=\int \cos 3x\left ( \frac{3\cos x+\cos 3x}{4} \right )dx=\frac{1}{4}\int \cos ^23xdx+\frac{3}{4}\int \cos x\cos 3xdx\)
\(=\frac{1}{8}\int (1+\cos 6x)dx+\frac{3}{8}\int (\cos 4x+\cos 2x)dx\)
\(=\frac{1}{8}\int (1+\cos 6x)dx+\frac{3}{8}\int (\cos 4x+\cos 2x)dx=\frac{x}{8}+\frac{\sin 6x}{48}+\frac{3\sin 4x}{32}+\frac{3\sin 2x}{16}\)
Suy ra \(\int ^{\pi}_{0}\cos ^3x\cos 3xdx=\frac{\pi}{8}\)
Tính các tích phân:
a) \(\int\limits^1_0\)\(\dfrac{xe^x+1+x}{e^x+1}\)dx
b)\(\int\limits^{\dfrac{\pi}{2}}_0\)\(\dfrac{1-\sin\left(x\right)}{1+\cos\left(x\right)}\)dx
c)\(\int\limits^2_1\)\(\dfrac{\left(x-1\right)ln\left(x\right)}{x^2}\)dx
d)\(\int\limits^e_1\)ln( x + 1)dx
Câu a)
\(I=\int ^{1}_{0}\frac{x(e^x+1)+1}{e^x+1}dx=\int ^{1}_{0}xdx+\int ^{1}_{0}\frac{dx}{e^x+1}\)
\(=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2}{2}+\int ^{1}_{0}\frac{d(e^x)}{e^x(e^x+1)}=\frac{1}{2}+\left.\begin{matrix} 1\\ 0\end{matrix}\right|\ln\left | \frac{e^x}{e^x+1} \right |\)
\(\Leftrightarrow I=\frac{3}{2}+\ln 2-\ln (e+1)\)
Câu d)
\(I=\int ^{e}_{1}\ln(x+1)d(x)=\int ^{e}_{1}\ln (x+1)d(x+1)\)
Đặt \(\left\{\begin{matrix} u=\ln (x+1)\\ dv=d(x+1)\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{d(x+1)}{x+1}\\ v=x+1\end{matrix}\right.\)
\(\Rightarrow I=\left.\begin{matrix} e\\ 1\end{matrix}\right|(x+1)\ln (x+1)-\int ^{e}_{1}d(x+1)\)
\(=(e+1)\ln \left ( \frac{e+1}{e} \right )-2\ln \left (\frac{2}{e}\right )\)
Câu b)
Đặt \(\tan \frac{x}{2}=t\). Ta có:
\(\left\{\begin{matrix} dt=d\left ( \tan \frac{x}{2} \right )=\frac{1}{2\cos ^2\frac{x}{2}}dx=\frac{t^2+1}{2}dx\rightarrow dx=\frac{2dt}{t^2+1}\\\ \cos x=\frac{1-t^2}{t^2+1}\end{matrix}\right.\)
\( I=\underbrace{\int ^{\frac{\pi}{2}}_{0}\frac{1}{1+\cos x}dx}_{A}+\underbrace{\int ^{\frac{\pi}{2}}_{0}\frac{d(\cos x)}{\cos x+1}}_{B}\)
Có \(B=\int ^{\frac{\pi}{2}}_{0}\frac{d(\cos x+1)}{\cos x+1}=\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\ln |\cos x+1|=-\ln 2\)
\(A=\int ^{1}_{0}\frac{2dt}{(t^2+1)\frac{2}{t^2+1}}=\int ^{1}_{0}dt=1\)
\(\Rightarrow I=A+B=1-\ln 2\)
Câu c)
Xét \(I=\underbrace{\int ^{2}_{1}\frac{\ln xdx}{x}}_{A}-\underbrace{\int ^{2}_{1}\frac{\ln xdx}{x^2}}_{B}\)
Có \( A=\int ^{2}_{1}\ln xd(\ln x)=\left.\begin{matrix} 2\\ 1\end{matrix}\right|\frac{\ln ^2 x}{2}=\frac{\ln ^2 2}{2}\)
Với \(B\) đặt \(\left\{\begin{matrix} u=\ln x\\ dv=\frac{dx}{x^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dx}{x}\\ v=\frac{-1}{x}\end{matrix}\right.\)
\(\Rightarrow B=\left.\begin{matrix} 2\\ 1\end{matrix}\right|\frac{-\ln x}{x}+\int ^{2}_{1}\frac{dx}{x^2}=\left.\begin{matrix} 2\\ 1\end{matrix}\right|\left ( \frac{-\ln x}{x}-\frac{1}{x} \right )=\frac{1}{2}-\frac{\ln 2}{2}\)
\(\Rightarrow I=A-B=\frac{\ln ^2 2+\ln 2-1}{2}\)
Tính các tích phân sau :
a) \(\int\limits^1_0\left(y^3+3y^2-2\right)dy\)
b) \(\int\limits^4_1\left(t+\dfrac{1}{\sqrt{t}}-\dfrac{1}{t^2}\right)dt\)
c) \(\int\limits^{\dfrac{\pi}{2}}_0\left(2\cos x-\sin2x\right)dx\)
d) \(\int\limits^1_0\left(3^s-2^s\right)^2ds\)
e) \(\int\limits^{\dfrac{\pi}{3}}_0\cos3xdx+\int\limits^{\dfrac{3\pi}{2}}_0\cos3xdx+\int\limits^{\dfrac{5\pi}{2}}_{\dfrac{3\pi}{2}}\cos3xdx\)
g) \(\int\limits^3_0\left|x^2-x-2\right|dx\)
h) \(\int\limits^{\dfrac{5\pi}{4}}_{\pi}\dfrac{\sin x-\cos x}{\sqrt{1+\sin2x}}dx\)
i) \(\int\limits^4_0\dfrac{4x-1}{\sqrt{2x+1}+2}dx\)
Câu nào mình biết thì mình làm nha.
1) Đổi thành \(\dfrac{y^4}{4}+y^3-2y\) rồi thế số.KQ là \(\dfrac{-3}{4}\)
2) Biến đổi thành \(\dfrac{t^2}{2}+2\sqrt{t}+\dfrac{1}{t}\) và thế số.KQ là \(\dfrac{35}{4}\)
3) Biến đổi thành 2sinx + cos(2x)/2 và thế số.KQ là 1
\(\int\limits^e_1\frac{1}{x\left(lnx+2\right)}dx\)
\(\int\limits^e_1\dfrac{1}{x\left(\ln x+2\right)}dx=\int\limits^e_1\dfrac{d\ln x}{\left(\ln x+2\right)}\)
\(=\int\limits^e_1\dfrac{d(\ln x+2)}{\left(\ln x+2\right)}\)
\(=\ln (\ln x+ 2)|^e_1\)
\(=\ln (3) - \ln (2)\)
\(=\ln (1,5)\)
Tính các tích phân sau đây :
a) \(\int\limits^{\dfrac{\pi}{2}}_0\left(x+1\right)\cos\left(x+\dfrac{\pi}{2}\right)dx\)
b) \(\int\limits^1_0\dfrac{x^2+x+1}{x+1}\log_2\left(x+1\right)dx\)
c) \(\int\limits^1_{\dfrac{1}{2}}\dfrac{x^2-1}{x^4+1}dx\) (đặt \(t=x+\dfrac{1}{x}\) )
d) \(\int\limits^{\dfrac{\pi}{2}}_0\dfrac{\sin3xdx}{3+4\sin x-\cos2x}dx\)
Tính :
a) \(\int\limits^{\dfrac{\pi}{2}}_0\cos2x.\sin^2dx\)
b) \(\int\limits^1_{-1}\left|2^x-2^{-x}\right|dx\)
c) \(\int\limits^2_1\dfrac{\left(x+1\right)\left(x+2\right)\left(x+3\right)}{x^2}dx\)
d) \(\int\limits^2_0\dfrac{1}{x^2-2x-3}dx\)
e) \(\int\limits^{\dfrac{\pi}{2}}_0\left(\sin x+\cos x\right)^2dx\)
g) \(\int\limits^{\pi}_0\left(x+\sin x\right)^2dx\)
a)
Ta có:
∫π20cos2xsin2xdx=12∫π20cos2x(1−cos2x)dx=12∫π20[cos2x−1+cos4x2]dx=14∫π20(2cos2x−cos4x−1)dx=14[sin2x−sin4x4−x]π20=−14.π2=−π8∫0π2cos2xsin2xdx=12∫0π2cos2x(1−cos2x)dx=12∫0π2[cos2x−1+cos4x2]dx=14∫0π2(2cos2x−cos4x−1)dx=14[sin2x−sin4x4−x]0π2=−14.π2=−π8
b)
Ta có: Xét 2x – 2-x ≥ 0 ⇔ x ≥ 0.
Ta tách thành tổng của hai tích phân:
∫1−1|2x−2−x|dx=−∫0−1(2x−2−x)dx+∫10(2x−2−x)dx=−(2xln2+2−xln2)∣∣0−1+(2xln2+2−xln2)∣∣10=1ln2∫−11|2x−2−x|dx=−∫−10(2x−2−x)dx+∫01(2x−2−x)dx=−(2xln2+2−xln2)|−10+(2xln2+2−xln2)|01=1ln2
c)
∫21(x+1)(x+2)(x+3)x2dx=∫21x3+6x2+11x+6x2dx=∫21(x+6+11x+6x2)dx=[x22+6x+11ln|x|−6x]∣∣21=(2+12+11ln2−3)−(12+6−6)=212+11ln2∫12(x+1)(x+2)(x+3)x2dx=∫12x3+6x2+11x+6x2dx=∫12(x+6+11x+6x2)dx=[x22+6x+11ln|x|−6x]|12=(2+12+11ln2−3)−(12+6−6)=212+11ln2
d)
∫201x2−2x−3dx=∫201(x+1)(x−3)dx=14∫20(1x−3−1x+1)dx=14[ln|x−3|−ln|x+1|]∣∣20=14[1−ln2−ln3]=14(1−ln6)∫021x2−2x−3dx=∫021(x+1)(x−3)dx=14∫02(1x−3−1x+1)dx=14[ln|x−3|−ln|x+1|]|02=14[1−ln2−ln3]=14(1−ln6)
e)
∫π20(sinx+cosx)2dx=∫π20(1+sin2x)dx=[x−cos2x2]∣∣π20=π2+1∫0π2(sinx+cosx)2dx=∫0π2(1+sin2x)dx=[x−cos2x2]|0π2=π2+1
g)
I=∫π0(x+sinx)2dx∫π0(x2+2xsinx+sin2x)dx=[x33]∣∣π0+2∫π0xsinxdx+12∫π0(1−cos2x)dxI=∫0π(x+sinx)2dx∫0π(x2+2xsinx+sin2x)dx=[x33]|0π+2∫0πxsinxdx+12∫0π(1−cos2x)dx
Tính :J=∫π0xsinxdxJ=∫0πxsinxdx
Đặt u = x ⇒ u’ = 1 và v’ = sinx ⇒ v = -cos x
Suy ra:
J=[−xcosx]∣∣π0+∫π0cosxdx=π+[sinx]∣∣π0=πJ=[−xcosx]|0π+∫0πcosxdx=π+[sinx]|0π=π
Do đó:
I=π33+2π+12[x−sin2x2]∣∣π30=π33+2π+π2=2π3+15π6