Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Luật Lê Bá
Xem chi tiết
Nguyễn Anh Quân
2 tháng 7 2017 lúc 21:29

1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2

= 4/9 .y.y.y . (3/2-3/2.y)^2

=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)

<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5

=4/9 . 243/3125

=108/3125

Đến đó tự giải

Rau
2 tháng 7 2017 lúc 21:38


Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1 
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2) 
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
 Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv 
 

Luật Lê Bá
2 tháng 7 2017 lúc 21:40
sai rồi hehe
Đức Minh Nguyễn
Xem chi tiết
zZz Cool Kid_new zZz
25 tháng 7 2019 lúc 15:00

\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)

Do \(x-y-z=0\)

\(\Rightarrow x-z=y;y-x=-z;y+z=x\)

Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)

Vậy A=-1

zZz Cool Kid_new zZz
25 tháng 7 2019 lúc 15:04

\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz+y+1}{yz+y+1}\)

\(=1\)

Thiên Thần Hye Kyo
Xem chi tiết
Thùy Ninh
15 tháng 7 2017 lúc 17:19

Ta có:

\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\) (1)

Hiển nhiên suy ra được BĐT Am-Gm

Áp dụng (1) ta được:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z};\frac{1}{z}+\frac{1}{x}\ge\frac{4}{z+x}\) 

Cộng các vế BĐT ta được

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\) (2)

Tương tự như vậy ta có:

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{y+z}\ge2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\) (3)

Áp dụng (2) và (3)  ta được:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge4\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\) 

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\) 

Vậy Max A = 1  

Baek Hyun
Xem chi tiết
Nguyen Duy Dai
Xem chi tiết
HD Film
20 tháng 8 2020 lúc 13:15

+) Ta chứng minh: \(\frac{x-2}{x+1}\le\frac{x-2}{3}\)

\(\Leftrightarrow\frac{3\left(x-2\right)-\left(x-2\right)\left(x+1\right)}{3\left(x+1\right)}\le0\)'

\(\Leftrightarrow\frac{-\left(x-2\right)^2}{3\left(x+1\right)}\le0\)(luôn đúng)

+) \(6=3\sqrt[3]{xyz}\le x+y+z\)

+) \(\text{Σ}\frac{x-2}{x+1}\le\frac{x-2+y-2+z-2}{3}\le\frac{0}{3}=0\)

Dấu = xảy ra khi x = y = z = 2

Khách vãng lai đã xóa
MOHAMET SALAS
Xem chi tiết
Đặng Nguyễn Khánh Uyên
Xem chi tiết
ngonhuminh
20 tháng 1 2017 lúc 19:43

\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}\Rightarrow k=2\Rightarrow x=y=z=1\)

A=6

ngọn gió băng giá
20 tháng 1 2017 lúc 23:35

\(\frac{x-y-z}{x}=1-\frac{y+z}{x}\) tương tự con khác

=> x=y=z

=> A=6

Nguyễn Huệ Lam
Xem chi tiết
alibaba nguyễn
17 tháng 1 2018 lúc 16:22

Ta có:

\(xy+yz+zx=4xyz\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)

\(P=\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\)

\(\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{2}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)

\(\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

Pain Thiên Đạo
17 tháng 1 2018 lúc 16:28

áp dụng cô si sháp cho 4 số ta được :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{16}{a+b+c+d}\)  Luôn đúng , ( tự chứng minh )

\(\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\ge\frac{1}{a+b+c+d}\) luôn luôn đúng

áp dụng vào  P ta được như sau

\(\frac{1}{x+x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) luôn đúng :))

\(\frac{1}{x+y+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\frac{1}{x+y+z+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)

Cộng tất cả vào ta được

\(P\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)\Leftrightarrow P\le\frac{1}{4}\left(x+y+z\right)\)

Thèo đề \(xy+yz+xz=4xyz\Leftrightarrow xy+yz+xz=xyz+xyz+xyz+xyz\)

Tao cũng éo hiểu tại sao nó = nhau được

1 đề sai  , 2 tao sai thế thôi

Cố gắng hơn nữa
17 tháng 1 2018 lúc 21:00
bác pain đi đánh nhau nhiều quá nên tẩu hỏa nhập ma rồi :v
Nguyễn Hải Đăng
Xem chi tiết