Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ṇĝuŷėṇ Ħỏǡŋġ
Xem chi tiết
huylcg
Xem chi tiết
Phạm Gia Khiêm
Xem chi tiết
Phạm Gia Khiêm
Xem chi tiết
Trần Hải Băng
Xem chi tiết
Akai Haruma
23 tháng 10 2024 lúc 20:59

Lời giải:

a. Với $n$ nguyên, để $A$ nguyên thì $6n-1\vdots 3n+2$

$\Rightarrow 2(3n+2)-5\vdots 3n+2$

$\Rightarrow 5\vdots 3n+2$

$\Rightarrow 3n+2\in \left\{\pm 1; \pm 5\right\}$

$\Rightarrow n\in \left\{-\frac{1}{3}; -1; 1; \frac{-7}{3}\right\}$

Do $n$ nguyên nên $n\in\left\{-1;1\right\}$

b.

\(A=\frac{2(3n+2)-5}{3n+2}=2-\frac{5}{3n+2}\)

Để $A$ min thì $\frac{5}{3n+2}$ max

$\Rightarrow 3n+2$ phải là số nguyên dương bé nhất.

$3n+2>0\Rightarrow n> \frac{-2}{3}=-0,6666$

$\Rightarrow n$ nhỏ nhất là $0$

$\Rightarrow 3n+2$ nhỏ nhất bằng 2.

Khi đó: $A_{\min}=2-\frac{5}{3.0+2}=\frac{-1}{2}$

ANH HÙNG TOÁN HỌC
Xem chi tiết
Hoàng Phương Lan
Xem chi tiết
Jenny phạm
Xem chi tiết
Jenny phạm
4 tháng 3 2018 lúc 19:22

mình cần gấp nhé

Phùng Minh Quân
4 tháng 3 2018 lúc 19:40

\(a)\) Ta có : 

\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)

Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)

Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Do đó : 

\(3n+1\)\(1\)\(-1\)\(2\)\(-2\)\(4\)\(-4\)
\(n\)\(0\)\(\frac{-2}{3}\)\(\frac{1}{3}\)\(-1\)\(1\)\(\frac{-5}{3}\)

Lại có  \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)

Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời  

Kỳ Tỉ
Xem chi tiết
Kalluto Zoldyck
23 tháng 4 2016 lúc 20:21

Để A thuộc Z => 6n - 1 chia hết 3n + 2

=> 2(3n+2) - 5 chia hết 3n + 2

=> 5 chia hết 3n + 2

=> 3n + 2 thuộc Ư(5)=.............

=> ............Còn lại tự làm nha!