So sánh:
\(\frac{15-2\sqrt{10}}{3}\) va \(\sqrt{10}\)
So sánh: \(\frac{15-2\sqrt{10}}{3}và\sqrt{15}\)
So sánh: \(\frac{15-2\sqrt{10}}{3}và\sqrt{15}\)
So sánh: \(\frac{15-2\sqrt{10}}{3}và\sqrt{15}\)
so sánh
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{100}}\)\(\)va \(10\)
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+....+\frac{1}{\sqrt{100}}\)
\(\Leftrightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>100.\frac{1}{\sqrt{100}}=10.\)
So sánh: \(\frac{15-2\sqrt{10}}{3}\)và \(\sqrt{15}\)
So sánh: \(\frac{15-2\sqrt{10}}{3}\) và \(\sqrt{15}\)
So sánh
\(\frac{15-2\sqrt{10}}{3}\)và \(\sqrt{15}\)
1) Rút gọn
\(A=\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\)
2) So sánh: \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\)và \(\sqrt{3}\)
1) \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)
\(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0
=> A=3
2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)
\(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)
\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)
\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)
\(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)
Mà A >0
=> A=2
Mà 4>3
=> \(\sqrt{4}=2>\sqrt{3}\)
=> \(A>\sqrt{3}\)
So sánh
\(\sqrt{\frac{10}{17}}va\frac{3}{4}\)
\(\sqrt{\frac{10}{17}}va\frac{3}{4}\)
Ta có \(\frac{10}{17}>\frac{9}{16}\)
\(\Rightarrow\sqrt{\frac{10}{17}}>\sqrt{\frac{9}{16}}\)
\(\Rightarrow\sqrt{\frac{10}{17}}>\frac{3}{4}\)
Học tốt