Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Ngọc Anh Minh
4 tháng 8 2023 lúc 7:37

\(Q=\left(a^2b^2+a^2+b^2+1\right)\left(c^2+1\right)=\)

\(=a^2b^2c^2+a^2b^2+a^2c^2+a^2+b^2c^2+b^2+c^2+1=\)

\(=a^2b^2c^2+\left(a^2b^2+b^2c^2+a^2c^2\right)+\left(a^2+b^2+c^2\right)+1\) (1)

Ta có

\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\)

\(=a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=1\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=1-2abc\left(a+b+c\right)\) (2)

Ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)=\)

\(=a^2+b^2+c^2+2\)

\(\Rightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\) (3)

Thay (2) và (3) vào (1)

\(Q=a^2b^2c^2+1-2abc\left(a+b+c\right)+\left(a+b+c\right)^2-2+1=\)

\(=\left(abc\right)^2-2abc\left(a+b+c\right)+\left(a+b+c\right)^2=\)

\(=\left[abc-\left(a+b+c\right)\right]^2\)

nguyễn thị thảo vy
Xem chi tiết
Không Tên
1 tháng 8 2018 lúc 16:24

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)    (do a+b+c = 0)

=>  \(B=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{ \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

=>   đpcm

Mitt
Xem chi tiết
Mitt
Xem chi tiết
trần xuân quyến
Xem chi tiết
Mitt
Xem chi tiết
Mitt
Xem chi tiết
Đoàn Đức Hà
11 tháng 8 2021 lúc 21:18

\(\hept{\begin{cases}a-2b\inℚ\\3a+4b\inℚ\end{cases}}\Rightarrow2\left(a-2b\right)+\left(3a+4b\right)=5a\inℚ\Leftrightarrow a\inℚ\)

\(\Rightarrow-2b\inℚ\Leftrightarrow b\inℚ\).

Ta có đpcm. 

Khách vãng lai đã xóa
Chi Khánh
Xem chi tiết
Nguyễn Minh Quang
14 tháng 8 2021 lúc 20:24

ta có :

\(a=\frac{2\left(a+3b\right)+3\left(3a-2b\right)}{11}\) nên a là số hữu tỉ 

\(b=\frac{-3\left(a+3b\right)+\left(3a-2b\right)}{-11}\) nên b là số hữu tỉ

Khách vãng lai đã xóa
Mitt
Xem chi tiết
Đoàn Đức Hà
11 tháng 8 2021 lúc 21:27

\(\hept{\begin{cases}3a-2b\inℚ\\2a+5b\inℚ\end{cases}}\Rightarrow5\left(3a-2b\right)+2\left(2a+5b\right)=19a\inℚ\Leftrightarrow a\inℚ\)

\(\Rightarrow-2b\inℚ\Leftrightarrow b\inℚ\).

Ta có đpcm. 

Khách vãng lai đã xóa