Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vua hải tặc ZORO
Xem chi tiết
Ngô Thu Hiền
Xem chi tiết
Vũ Lê Ngọc Liên
Xem chi tiết
Đỗ Lê Tú Linh
26 tháng 12 2015 lúc 21:49

chả có j mà ngồi cười như thật!

Nguyễn Quốc Khánh
26 tháng 12 2015 lúc 21:59

Đặt \(A=6^{2n+1}+5^{n+2}\)

Với n=0

=>\(A\left(0\right)=6^{2.0+1}+5^{0+2}=6+5^2=31\) chia hết cho 31

Giả sử n=k thì A sẽ chia hết cho 31

=>\(A\left(k\right)=6^{2k+1}+5^{k+2}\) chia hết cho 31

Chứng minh n=k+1 cũng chia hết cho 31 hay \(A\left(k+1\right)=6^{2\left(k+1\right)+1}+5^{\left(k+1\right)+2}\) chia hết cho 31

 thật vậy

\(A\left(k+1\right)=6^{2k+3}+5^{k+3}=6^{2k+1}.36+5^{k+2}.5\)

\(=5\left(6^{2k+1}+5^{k+2}\right)+3.6^{2k+1}\)

Theo giả thiết ta có

\(6^{2k+1}+5^{k+2}\) chia hết cho 31

=>\(5\left(6^{2k+1}+5^{k+2}\right)\) chia hết cho 31

\(31.6^{2k+1}\) chia hết cho 31

=>\(5\left(6^{2k+1}+5^{k+2}\right)+31.6^{2k+1}\) chia hết cho 31

Hay \(A\left(k+1\right)\) chia hết cho 31

Vậy \(^{6^{2n+1}+5^{n+2}}\) chia hết cho 31

Nguyễn Văn Hoàng Anh
15 tháng 3 2017 lúc 21:54

bác Khánh làm hay thật 

Thắng Nguyễn
Xem chi tiết
Lê Đăng Ninh
7 tháng 1 2016 lúc 22:26

vì néu n lẻ thì n+1 chẵn mà lẻ nhân chẵn bằng chẵn chia hết cho 2 mà nếu n chẵn thì n+1 lẻ mà chẵn nhân lẻ bằng lẻ nên n(n+1) chia hết cho 2

Tứ Đại KAGE
8 tháng 1 2016 lúc 14:22

ĐÂY KHÔNG PHẢI TOÁN LỚP 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!....

Nguyễn Hữu Hưng
8 tháng 1 2016 lúc 15:17

n(n+1)  xét x thuộc N => x là số chẵn hoặc số lẻ

nếu n là số chẵn thì n+1 là số lẻ chẳn nhân lẻ chia hết cho 2

nếu n là số lẻ thì n+1 là số chẵn mà lẻ nhân chẵn = chẵn chia hết cho 2 

 

 

Hoàng Phúc
Xem chi tiết
OoO Pipy OoO
1 tháng 8 2016 lúc 10:04
Với n = 1, ta có: 14 - 12 = 0 chia hết cho 12

Vậy đẳng thức đúng với n = 1.

Giả sử với n = k \(\left(k\ge1\right)\), khi đó ta có:

\(k^4-k^2\) chia hết cho 12

Ta cần chứng minh mệnh đề đúng với n = k + 1.

Ta có:

(k + 1)4 - (k + 1)2

\(=\left(k+1\right)^2\left[\left(k+1\right)^2-1\right]\)

\(=\left(k+1\right)^2\left(k+2\right)k\) chia hết cho 12

Vậy đẳng thức đúng với n = k + 1.

Kết luận: Vậy n4 - n2 chia hết cho 12 với mọi số nguyên dương N.

P/s: e chưa đc học phương pháp quy nạp nên chỉ có thể nhìn theo bài mẫu rồi trình bày tương tự thoy, nên có j sai, mong a bỏ qua cho a~ ^^

Đinh Thị Ngọc Trâm
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 11 2019 lúc 1:18

Với \(n=1\Rightarrow10-4+3=9⋮9\) (đúng)

Giả sử đúng với \(n=k\) hay \(10^k-4^k+3k⋮9\)

Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay:

\(10^{k+1}-4^{k+1}+3\left(k+1\right)⋮9\)

Thật vậy:

\(10^{k+1}-4^{k+1}+3\left(k+1\right)=10.10^k-4.4^k+3k+3\)

\(=\left(10^k-4^k+3k\right)+9.10^k-3.\left(4^k-1\right)\)

Do \(4\equiv1\left(mod3\right)\Rightarrow4^k-1⋮3\Rightarrow3\left(4^k-1\right)⋮9\)

\(\Rightarrow\left(10^k-4^k+3k\right)+9.10^k-3\left(4^k-1\right)⋮9\) (đpcm)

Khách vãng lai đã xóa
Đinh Thị Ngọc Trâm
Xem chi tiết
Lê Thanh Sơn
Xem chi tiết
Akai Haruma
7 tháng 2 2022 lúc 23:40

Lời giải:
$n^3+3n^2+5n=n(n^2+3n+5)$

Cho $n=1$ thì $n^3+3n^2+5n=9\vdots 3$

Cho $n=2$ thì $n^3+3n^2+5n=30\vdots 3$....

Giả sử điều trên đúng với $n=k$. Tức là $k^3+3k^2+5k\vdots 3$

Ta cần cm đúng với $n=k+1$, tức là $(k+1)^3+3(k+1)^2+5(k+1)\vdots 3$

Thật vậy:

$(k+1)^3+3(k+1)^2+5(k+1)=k^3+3k^2+3k+1+5k+5+3(k+1)^2$

$=(k^3+3k^2+5k)+3(k+2)+3(k+1)^2\vdots 3$ do $k^3+3k^2+5k\vdots 3; 3(k+2)\vdots 3; 3(k+1)^2\vdots 3$

Vậy ta có đpcm.

Vũ Lê Ngọc Liên
Xem chi tiết
Nhọ Nồi
7 tháng 1 2016 lúc 22:20

Gọi cái cần chứng minh là (*)

+) Với n = 1 thì (*) = 4 + 15 - 1 = 18 chia hết cho 9

+) Giả sử (*) đúng với n = k => 4k + 15k - 1 chia hết cho 9 thì ta cần chứng minh (*) luôn đúng với k + 1 tức 4k + 1 + 15(k + 1) - 1 chia hết cho 9

Thật vậy:

4k + 1 + 15(k + 1) - 1

= 4.4k + 15k + 15 - 1

= 4.4k + 15k + 18 - 4 - 45k

= 4.(4k + 15k - 1) - 45k - 18

Vì 4.(4k + 15k - 1) chia hết cho 9; 45k chia hết cho 9 và 18 cũng chia hết cho 9

=> 4.(4k + 15k - 1) - 45k - 18 chia hết cho 9 

hay 4k + 1 + 15(k + 1) - 1 chia hết cho 9

=> Phương pháp quy nạp được chứng minh

Vậy 4n + 15n - 1 chia hết cho 9 với mọi n thuộc N*

Thắng Nguyễn
7 tháng 1 2016 lúc 22:14

chứng minh mà ghi kết quả

boem hyeon ji
7 tháng 1 2016 lúc 22:15

45 nha ban tich nha hihi