Chứng minh bằng phương thức quy nạp : 62n+1 + 5n+2 chia hết cho 31 ( n\(\in\) N )
Chứng minh bằng phương thức quy nạp : 62n+1 + 5n+2 chia hết cho 31 ( n\(\in\)N )
bằng phương pháp chứng minh quy nạp toán học hãy chứng minh 2^(5n+3)+5^(n)x3^(n+2) chia hết cho 17 (với n thuộc N)
Chứng minh bằng phương pháp quy nạp :
62n + 1 + 5n + 2 chia hết cho 31
Đặt \(A=6^{2n+1}+5^{n+2}\)
Với n=0
=>\(A\left(0\right)=6^{2.0+1}+5^{0+2}=6+5^2=31\) chia hết cho 31
Giả sử n=k thì A sẽ chia hết cho 31
=>\(A\left(k\right)=6^{2k+1}+5^{k+2}\) chia hết cho 31
Chứng minh n=k+1 cũng chia hết cho 31 hay \(A\left(k+1\right)=6^{2\left(k+1\right)+1}+5^{\left(k+1\right)+2}\) chia hết cho 31
thật vậy
\(A\left(k+1\right)=6^{2k+3}+5^{k+3}=6^{2k+1}.36+5^{k+2}.5\)
\(=5\left(6^{2k+1}+5^{k+2}\right)+3.6^{2k+1}\)
Theo giả thiết ta có
\(6^{2k+1}+5^{k+2}\) chia hết cho 31
=>\(5\left(6^{2k+1}+5^{k+2}\right)\) chia hết cho 31
mà\(31.6^{2k+1}\) chia hết cho 31
=>\(5\left(6^{2k+1}+5^{k+2}\right)+31.6^{2k+1}\) chia hết cho 31
Hay \(A\left(k+1\right)\) chia hết cho 31
Vậy \(^{6^{2n+1}+5^{n+2}}\) chia hết cho 31
Chứng minh bằng quy nạp :
n(n+1) chia hết cho 2 ( n\(\in\) N )
vì néu n lẻ thì n+1 chẵn mà lẻ nhân chẵn bằng chẵn chia hết cho 2 mà nếu n chẵn thì n+1 lẻ mà chẵn nhân lẻ bằng lẻ nên n(n+1) chia hết cho 2
ĐÂY KHÔNG PHẢI TOÁN LỚP 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!....
n(n+1) xét x thuộc N => x là số chẵn hoặc số lẻ
nếu n là số chẵn thì n+1 là số lẻ chẳn nhân lẻ chia hết cho 2
nếu n là số lẻ thì n+1 là số chẵn mà lẻ nhân chẵn = chẵn chia hết cho 2
Chứng minh bằng phương pháp quy nạp:
Chứng minh rằng n4-n2 chia hết cho 12 với mọi số nguyên dương n
Vậy đẳng thức đúng với n = 1.
Giả sử với n = k \(\left(k\ge1\right)\), khi đó ta có:\(k^4-k^2\) chia hết cho 12
Ta cần chứng minh mệnh đề đúng với n = k + 1.Ta có:
(k + 1)4 - (k + 1)2
\(=\left(k+1\right)^2\left[\left(k+1\right)^2-1\right]\)
\(=\left(k+1\right)^2\left(k+2\right)k\) chia hết cho 12
Vậy đẳng thức đúng với n = k + 1.
Kết luận: Vậy n4 - n2 chia hết cho 12 với mọi số nguyên dương N.
P/s: e chưa đc học phương pháp quy nạp nên chỉ có thể nhìn theo bài mẫu rồi trình bày tương tự thoy, nên có j sai, mong a bỏ qua cho a~ ^^
chứng minh chia hết bằng phương pháp quy nạp 10n -4n+3n chia hết cho 9
Với \(n=1\Rightarrow10-4+3=9⋮9\) (đúng)
Giả sử đúng với \(n=k\) hay \(10^k-4^k+3k⋮9\)
Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay:
\(10^{k+1}-4^{k+1}+3\left(k+1\right)⋮9\)
Thật vậy:
\(10^{k+1}-4^{k+1}+3\left(k+1\right)=10.10^k-4.4^k+3k+3\)
\(=\left(10^k-4^k+3k\right)+9.10^k-3.\left(4^k-1\right)\)
Do \(4\equiv1\left(mod3\right)\Rightarrow4^k-1⋮3\Rightarrow3\left(4^k-1\right)⋮9\)
\(\Rightarrow\left(10^k-4^k+3k\right)+9.10^k-3\left(4^k-1\right)⋮9\) (đpcm)
chứng minh chia hết bằng phương pháp quy nạp
10n-4n+3n chia hết cho 9
n^3 + 3n^2 + 5n chia hết cho 3
Tìm kết quả, sử dụng phương pháp quy nạp
Lời giải:
$n^3+3n^2+5n=n(n^2+3n+5)$
Cho $n=1$ thì $n^3+3n^2+5n=9\vdots 3$
Cho $n=2$ thì $n^3+3n^2+5n=30\vdots 3$....
Giả sử điều trên đúng với $n=k$. Tức là $k^3+3k^2+5k\vdots 3$
Ta cần cm đúng với $n=k+1$, tức là $(k+1)^3+3(k+1)^2+5(k+1)\vdots 3$
Thật vậy:
$(k+1)^3+3(k+1)^2+5(k+1)=k^3+3k^2+3k+1+5k+5+3(k+1)^2$
$=(k^3+3k^2+5k)+3(k+2)+3(k+1)^2\vdots 3$ do $k^3+3k^2+5k\vdots 3; 3(k+2)\vdots 3; 3(k+1)^2\vdots 3$
Vậy ta có đpcm.
Chứng minh bằng quy nạp :
4n + 15n - 1 chia hết cho 9 ( n\(\in\) N* )
Gọi cái cần chứng minh là (*)
+) Với n = 1 thì (*) = 4 + 15 - 1 = 18 chia hết cho 9
+) Giả sử (*) đúng với n = k => 4k + 15k - 1 chia hết cho 9 thì ta cần chứng minh (*) luôn đúng với k + 1 tức 4k + 1 + 15(k + 1) - 1 chia hết cho 9
Thật vậy:
4k + 1 + 15(k + 1) - 1
= 4.4k + 15k + 15 - 1
= 4.4k + 15k + 18 - 4 - 45k
= 4.(4k + 15k - 1) - 45k - 18
Vì 4.(4k + 15k - 1) chia hết cho 9; 45k chia hết cho 9 và 18 cũng chia hết cho 9
=> 4.(4k + 15k - 1) - 45k - 18 chia hết cho 9
hay 4k + 1 + 15(k + 1) - 1 chia hết cho 9
=> Phương pháp quy nạp được chứng minh
Vậy 4n + 15n - 1 chia hết cho 9 với mọi n thuộc N*