Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Vũ Khánh Nguyên
Xem chi tiết
huongkarry
Xem chi tiết
Nguyễn Quang Linh
5 tháng 8 2015 lúc 17:22

 Gọi (14n+3,21n+4)=d (d thuộc N) 
=>14n+3,21n+4 chia hết cho d 
=>3(14n+3)-2(21n+4)=1 chia hết cho d 
=>d=1 
Vậy 14n+3 và 21n+4 là hai số nguyên tố cùng nhau với mọi số tự nhiên n

Sat Thu vip bro
31 tháng 10 2017 lúc 21:43

mk ko bik

pham ngoc anh
3 tháng 2 2018 lúc 19:56

gọi d=UCLN(14n+3,21n+4)(d thuoc N*)

phan con lai tu lam nhé!

Phạm Thùy Linh
Xem chi tiết
Cú_Đêm
9 tháng 11 2019 lúc 22:15

Gọi \(ƯCLN\left(21n+4;14n+3\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}\)

\(\Rightarrow42n+9-\left(42n+8\right)⋮d\)

\(\Rightarrow1⋮d.\Rightarrow d\inƯ\left(1\right)=\left\{-1;1\right\}\)

do \(d\inℕ^∗\Rightarrow d=1\)

Vậy \(ƯCLN\left(21n+4;14n+3\right)=1\)hay \(21n+4\)và \(14n+3\)nguyên tố cùng nhau

Khách vãng lai đã xóa
Trần Yến Vy
Xem chi tiết
Nguyễn Gia Hân
Xem chi tiết
phạm ngọc anh
Xem chi tiết
Trần Huyền Châu
24 tháng 11 2018 lúc 19:39
Gọi ƯCLN(14n+3,21n+4)=d(d là số tự nhiên khác 0 ) => 14n+3 chia hết cho d và 21n+4 chia hết cho d => 21n+4-14n+3 chia hết cho d => 7n+1 chia hết cho d Suy ra 2(7n+1) chi hết cho d Suy ra 14n+2 chia hết cho d Mà 14n+3 chi hết cho d Suy ra 14n+3-14n+2 chi hết cho Suy ra 1 chia hết cho d, d là số tự nhiên Suy ra d=1 Vậy 14n+3 và 21n+4 nguyên tố cùng nhau
☠✔AFK✪Kaito Kid✔☠
24 tháng 11 2018 lúc 19:39

Vì 14n+3 và 21n+4 là số nguyên tố cùng nhau 

=> ƯCLN(14n+3;21n+4)=1

Gọi ƯCLN đó là a , ta có :

14n+3 chia hết cho a

21n+4 chia hết cho a

=> 3.(14n+3)=42n+9

2.(21n+4)=42n+8

=>42n+9-42n+8 chia hết cho a

=> 1 chia hết cho d

=> d=1

Vậy 14n+3 và 21n+4 là số nguyên tố cùng nhau

Hoa Quang Binh
24 tháng 11 2018 lúc 19:40

Đặt UCLN ( 14n + 3 ; 21n + 4 ) = d

=> 14n + 3 chia hết cho d ; 21n + 4 chia hết cho d

=> 3 ( 14n + 3 ) chia hết cho d ; 2 ( 21n + 4 ) chia hết chod 

=> 42n + 9 chia hết cho d; 42n + 8 chia hết cho d

=> 42n + 9 - 42n - 8 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 14n + 3 và 21n + 4 là 2 số nguyên tố cùng nhau

Nguyễn Ngọc Minh Hoài
Xem chi tiết
Hạ Băng
14 tháng 11 2017 lúc 18:57

 Gọi (14n+3,21n+4)=d (d thuộc N)   

=>14n+3,21n+4 chia hết cho d  =>3(14n+3)-2(21n+4)=1 chia hết cho d 

=>d=1 

Vậy 14n+3 và 21n+4 là hai số nguyên tố cùng nhau với mọi số tự nhiên 

minhduc
14 tháng 11 2017 lúc 18:57

Gọi d là một ước chung của hai số 21n+4 và 14n+3 

21n+4 và 14n+3 chia hết cho d 
=> (21n+4) - (14n+3) = 7n+1 chia hết cho d 
=> 2(7n+1) = 14n+2 chia hết cho d 

14n+2 và 14n+3 chia hết cho d 
=> (14n+3) - (14n+2) = 1 chia hết cho d 
Vậy d = 1 

Ước chung lớn nhất bằng 1.

Sakuraba Laura
14 tháng 11 2017 lúc 19:00

Gọi d là ƯCLN(14n + 3; 21n + 4), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}14n+3⋮d\\21n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(14n+3\right)⋮d\\2\left(21n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n+9⋮d\\42n+8⋮d\end{cases}}}\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(14n+3;21n+4\right)=1\)

\(\Rightarrow\)14n + 3 và 21n + 4 là hai số nguyên tố cùng nhau.

nguyen ha tung chi
Xem chi tiết
Lãnh Hạ Thiên Băng
6 tháng 11 2016 lúc 14:11

a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3

Gọi ước chung lớn nhất của 2k+1 và 2k+3 là d

=> 2k+1 chia hết cho d; 2k+3 chia hết cho d

=> (2k+1 - 2k-3) chia hết cho d

=> -2 chia hết cho d

=> d thuộc Ư(-2) => d thuộc {-2; -1; 1; 2}

mà d lớn nhất; số tự nhiên lẻ không chia hết cho 2 => d = 1

=> 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau

b) Gọi ƯCLN(2n+5;3n+7) là d

=> 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n+15 chia hết cho d

3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d

=> (6n+15-6n-14) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1)

mà d lớn nhất => d = 1

=> 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

Nguyễn Hoàng Hà
Xem chi tiết