tìm GTLN của \(\frac{5}{\left(2x\right)^2-1}\)
a) Tìm GTNN của biểu thức \(C=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\)
b)Tìm GTLN của biểu thức \(D=\frac{5}{\left(2x-1\right)^2+3}\)
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
Tìm GTNN của \(C=\left(x+2\right)^2+\left(y.\frac{1}{5}\right)^2-10\)
Tìm GTLN của \(D=\frac{4}{\left(2x-3\right)^2+5}\)
A, \(C=\left(x+2\right)^2+\left(\frac{y}{5}\right)^2-10\)
mà \(\left(x+2\right)^2\ge0,\left(\frac{y}{5}\right)^2\ge0\)
\(C=\left(x+2\right)^2+\left(\frac{y}{5}\right)^2-10\ge-10\)
Vậy C đạt GTNN là -10 khi \(\left(x+2\right)^2=0và\left(\frac{y}{5}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=0\end{cases}}\)
B, Vì \(4>0\)và\(\left(2x-3\right)^2+5>0\)
Nên \(D=\frac{4}{\left(2x-3\right)^2+5}\)có GTLN khi (2x-3)2+5 đạt GTNN
\(\left(2x-3\right)^2+5\ge5\)
\(\Rightarrow\left(2x-3\right)^2+5\)có GTNN là 5 khi 2x-3=0 => x=3/2
Thay vào D ta có: \(D=\frac{4}{5}\)
Vâỵ \(D_{max}=\frac{4}{5}\)khi\(x=\frac{3}{2}\)
tìm giá trị của x để biểu thức C = \(\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt GTLN
Ta có:
\(\left(\frac{1}{4}-2x\right)^2\ge0,\left|8x-1\right|\ge0\)
=> \(-\frac{1}{5}\left(\frac{1}{4}-2x\right)^2\le0,-\left|8x-1\right|\le0\)
=> \(C\le0+0\)+2016=2016
"=" xảy ra <=> \(\hept{\begin{cases}\frac{1}{4}-2x=0\\8x-1=0\end{cases}\Leftrightarrow}x=\frac{1}{8}\)
Vậy C đạt giá trị lớn nhất là 2016 khi x=1/8
a. tìm GTNN của biểu thức \(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
b. tìm GTLN của biểu thức \(D=\frac{4}{\left(2x-3\right)^2+5}\)
a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)
=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)
Dấu "=" xảy ra khi x=-2;y=1/5
Vậy GTNN của C là -10 tại x=-2;y=1/5
b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)
Dấu "=" xảy ra khi: x=3/2
Vậy GTLN của D là : 4/5 tại x=3/2
b)B có GTLN <=> (2x-3)2+5 có GTNN
Vì (2x-3)2 > 0 với mọi x
=>(2x-3)2+5 > 5 với mọi x
=>GTNN của (2x-3)2+5 là 5
=>D = \(\frac{4}{\left(2x-3\right)^2+5}\) < \(\frac{4}{5}\)
=>GTLN của D là 4/5
Dấu "=" xảy ra <=> (2x-3)2=0<=>x=3/2
Vậy..............
Tìm a) GTNN của biểu thức B=|2x+6|+2+2x
b) GTLN của biểu thức C=\(\frac{4-\left|x-y+1\right|}{5+\left|x+y+1\right|}\)
173. a) Tìm GTNN của biểu thức \(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
b) Tìm GTLN của biểu thức \(D=\frac{4}{\left(2x-3\right)^2+5}\)
Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó
Giúp mình với :
a)Tìm GTNN của A = \(\left|x^2-x+1\right|+\left|x^2-x-2\right|\)
b ) tìm GTNLN của D =\(\frac{x+2}{\left|x\right|}\)với x khác 0 và x thuộc Z
c) tìm GTLN của F=\(\frac{7x-8}{2x-3}\)với x thuộc N
d) Timf GTNN của G=\(x\left(x+1\right)+x+2\)
e) Tìm GTLN của J = \(x^4+2x^2-7\)
f) Tìm GTLN của biểu thức N = \(\left(x+2\right)^2-4x+2\)
G ) tìm GTLN của T= \(4\left(3-\left|x-1\right|\right)+\left|1-x\right|\)
Tìm GTLN của
a,A=5-(2x-1)
b,B=\(\frac{1}{\left(x-1\right)^2+3}\)
Sửa đề:
a) \(A=5-\left(2x-1\right)^2\le5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Max_A=5\Leftrightarrow x=\frac{1}{2}\)
b) \(B=\frac{1}{\left(x-1\right)^2+3}\le\frac{1}{3}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Max_B=\frac{1}{3}\Leftrightarrow x=1\)