cho Xoy nhon. tu diem a thuoc tia phan giac cua xoy, ve duong thang song song voi ox cat oy o b
Cho biet tu diem A thuoc tia phan giac cua goc xoy co mu nha! ve duong thang song song voi Ox cat Oy tai B va ve duong thang song song voi Oy tai C a)chung minh BOA=AOC ,b) chung minh AO la tia phan giac cua BAC
Cho goc xOy nhon , tu diem A thuoc tia phan giac cua goc xOy , ve duong thang song song voi Ox cat Oy o B
a , Tim tren hinh ve hai goc so le trong
b. CMR : goc BOA = goc BAO
Ai nhanh va dung nhat mik se tick!
cho goc nhon xOy. lay diem A thuoc tia Ox, lay diem B thuoc tia Oy sao cho OA=OB. Qua A ke duong thang vuong goc voi Ox cat oy tai M, qua B ke duong thang vuong goc voi Oy cat Ox tai N. goi H la giao diem cua AM va BN, I la trung diem cua MN. chung minh rang:
a) ON =OM va AN=BM
b) tia OH la tia phan giac cua goc xOy
c) ba diem O,H,I thang hang
a) Xét ΔMAO vuông tại A và ΔNBO vuông tại B có:
OA = OB (GT)
góc O chung
=> ΔMAO = ΔNBO (cạnh huyền - góc nhọn)
=> OM = ON ( 2 cạnh tương ứng ) → đpcm
Ta có OA + AN = ON
OB + BM = OM
mà OM = ON ( cm trên ); OA = OB
=> AN = BM → đpcm
b) Xét ΔNOH và ΔMOH có;
ON = OM (cm trên)
OH chung
NH = MH (suy từ gt)
=> ΔNOH = ΔMOH (c.c.c)
=> góc NOH = MOH ( 2 góc tương ứng )
Do đó OH là tia pg của góc xOy → đpcm (1)
c) Vì ΔMAO = ΔNBO nên góc OMA = ONB (2 góc tương ứng) hay ANI = BMI.
Xét ΔNAI và ΔMBI có:
góc ANI = BMI (cm trên)
AN = BM ( câu a)
góc NAI = MBI (= 90 )
=> ΔNAI = ΔMBI ( g.c.g )
=> AI = BI (2 cạnh tương ứng)
Xét ΔAOI và ΔBOI có :
AI = BI (cm trên)
góc OAI = OBI (=90)
OI chung
=> ΔAOI = ΔBOI ( c.g.c )
=> góc AOI = BOI ( 2 góc tương ứng )
Do đó OI là tia pg của xOy (2)
Từ (1) ở câu b và (2) suy ra O, H, I thẳng hàng.
Chúc học tốt nguyen thi minh nguyet
a) Xét t/g OAM vuông tại A và t/g OBN vuông tại B có:
OA = OB (gt)
O là góc chung
Do đó, t/g OAM = t/g OBN ( cạnh góc vuông và góc nhọn kề)
=> AMO = BNO (2 góc tương ứng)
OM = ON (2 cạnh tương ứng) (1)
Lại có: OB = OA (gt)
=> OM - OB = ON - OA
=> BM = AN (2)
(1) và (2) là đpcm
b) Xét t/g HAN vuông tại A và t/g HBM vuông tại B có:
AN = BM (câu a)
ANH = BMH (câu a)
Do đó, t/g HAN = t/g HBM ( cạnh góc vuông và góc nhọn kề)
=> HN = HM (2 cạnh tương ứng)
Dễ dàng c/m t/g NOH = t/g MOH (c.c.c)
=> NOH = MOH (2 góc tương ứng)
=> OH là phân giác NOM hay OH là phân giác xOy (đpcm)
c) Dễ dàng c/m t/g NOI = t/g MOI (c.c.c)
=> NOI = MOI (2 góc tương ứng)
=> OI là phân giác NOM
Mà OH cũng là phân giác NOM
Nên O,H,I thẳng hàng (đpcm)
cho goc Xoy nho hon 90 do va tia phan giac Ot lay A tren Oz va M la trung diem cua OA tu M ke duong thang vuong goc voi OA cat OY o B chung minh tam giac ABO can va Ox song song voi AB
cho goc xoy =50 do. lay diem A tren tia ox . tren cung 1 nua mat phang bo ox chua tia oy, ve tia ot sao cho oy cat nhau tai B va goc oAt =80 do. goi at' la tia phan giac cua goc xAt
a) chung minh At'song song voi Oy
b) tren nua mat phang ko chua diem A bo duong thang oy ve tia Bn song song Ox
ta có\(\widehat{OAt}+\widehat{tAx}=\widehat{OAx}\)
thay\(80^o+\widehat{tAx}=180^o\)
\(\widehat{tAx}=180^o-80^o=100^o\)
vid tia At' là tia phân giác của tAx
\(\Rightarrow\widehat{tAt'}=\widehat{t'Ax}=\frac{\widehat{xAt}}{2}=\frac{100^o}{2}=50^o\)
\(\Rightarrow\widehat{xAt'}=\widehat{xOy}=50^o\)
hai góc \(\widehat{xAt'}\)và\(\widehat{xOy}\)ở vị trí đồng vị bằng nhau
\(\Rightarrow Oy//At'\)
b)
Cho goc nhon XOY . Goi M la mot diem thuoc phan giac cua goc XOY . Ke MA vuong goc voi OX tai A , MB vuong goc voi OY tai B
a) CM tam giac OAB can
b) Duong thang BM cat OX tai D . Duong thang AM cat OY tai E . Chung minh MD=ME
c) Chung minh Om la trung truc cua DE
Cho goc nhon xOy. Diem H nam tren tia phan giac cua goc xOy. Tu H ke cac duong vuong goc xuong hai canh Ox va Oy tai A vaf B ( A thuoc Ox, B thuoc Oy )
a) CM: tam giac OAB can
b) Tu A ke AD vuong goc Oy ( D thuoc Oy ) , C la giao diem cua AD voi OH. CM: BC vuong goc Ox
c) Khi goc xOy = 60° , CM: OA = OD
Ta có hình vẽ:
a/ Xét hai tam giác vuông OAH và OBH có:
góc AOH = góc BOH (Gt)
OH: cạnh chung
=> tam giác OAH = tam giác OBH
=> OA = OB (hai cạnh tương ứng)
Vậy tam giác OAB cân tại O
b/ Ta có: OA = OB (cmt)
Ta lại có: AH = BH (t/g OAH = t/g BOH)
=> OH là trung trực của AB
=> OH vuông góc vs AB
hay OH là đường cao của tam giác OAB
Ta có: AD vuông góc với OB
hay AD là đường cao của tam giác OAB
Mà AD cắt OH tại C
=> C là trực tâm của tam giác
=> BC vuông góc vs OA
hay BC vuông góc vs Ox
cho goc xoy = 100 do h thuoc tia phan giac cua goc do duong thang vuong goc voi oh tai h cat ox oy thu tu o a va b
Cho goc nhon xOy. Diem H nam tren tia phan giac cua goc nay. Tu H dung cac duong HA, HB vuong goc voi cac canh Ox va Oy (A thuoc Ox, B thuoc Oy ).
a) CM: Tam giac HAB can
b) Tu A ke AD vuong goc voi Oy ( D thuoc Oy ). Goi C la giao diem cua AD voi OH. CM: BC vuong goc voi Ox
Tự vẽ hình.
a) Xét \(\Delta OAH;\Delta OBH\) vuông tại A; B có:
OH chung
\(\widehat{AOH}=\widehat{BOH}\) (tia phân giác)
\(\Rightarrow\Delta OAH=\Delta OBH\left(ch-gn\right)\)
\(\Rightarrow AH=BH\)
\(\Rightarrow\Delta HAB\) cân tại H.
b) Gọi giao điểm của BC và OA là E.
Xét \(\Delta OAC;\Delta OBC:\)
\(OA=OB\) (suy ra từ câu a)
\(\widehat{AOC}=\widehat{BOC}\) (tia pg)
OC chung
\(\Rightarrow\Delta OAC=\Delta OBC\left(c.g.c\right)\)
\(\Rightarrow\widehat{OAC}=\widehat{OBC}\) hay \(\widehat{OAD}=\widehat{OBE}\)
Xét \(\Delta OAD;\Delta OBE\):
\(\widehat{O}\) chung
\(OA=OB\)
\(\widehat{OAD}=\widehat{OBE}\) (c/m trên)
\(\Rightarrow\Delta OAD=\Delta OBE\left(g.c.g\right)\)
\(\Rightarrow\widehat{ODA}=\widehat{OEB}=90^o\)
\(\Rightarrow BC\perp Ox\)