Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran Thi Xuan
Xem chi tiết
Boy Lanh Lung
20 tháng 8 2017 lúc 12:53

x2+y2+z2= xy+yz+zx.

=> 2x2+2y2+2z2-2xy-2yz-2zx=0

=> ( x-y)2+(y-z.)2+(z-x)=0

=> x=y=z=0

Thay x=y=z vào x2011+y2011+z2011=32012 ta được:

3.x2011=3.32011

=> x2011=32011

=> x=3 hoặc x = -3

Hay x=y=z=3 hoặc x=y=z=-3

Đinh Đức Hùng
20 tháng 8 2017 lúc 13:11

1) có bn giải rồi ko giải nữa

2) \(A=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)....\left(2011^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)....\left(2012^4+\frac{1}{4}\right)}\)

Với mọi n thuộc N ta có :

\(n^4+\frac{1}{4}=\left(n^4+2.\frac{1}{2}.n^2+\frac{1}{4}\right)-n^2=\left(n^2+\frac{1}{2}\right)^2-n^2=\left(n^2-n+\frac{1}{2}\right)\left(n^2+n+\frac{1}{2}\right)\)

\(=\left[n\left(n-1\right)+\frac{1}{2}\right]\left[n\left(n+1\right)+\frac{1}{2}\right]\)

Áp dụng ta được :

\(A=\frac{\frac{1}{2}\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right)....\left(2011.2012+\frac{1}{2}\right)}{\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right).......\left(2012.2013+\frac{1}{2}\right)}\)

\(=\frac{\frac{1}{2}}{2012.2013+\frac{1}{2}}=\frac{1}{8100313}\)

Ngô Thu Hà
Xem chi tiết
Phan Trung Dũng
Xem chi tiết
le syn dùog
Xem chi tiết
Phan Trung Dũng
Xem chi tiết
nguyenquangminh
Xem chi tiết
nguyenquangminh
24 tháng 2 2018 lúc 16:09

mình đang cần gấp.Ngày 26 tháng 2 năm 2018 là mình phải nộp rồi

Nguyễn Hải Yến
Xem chi tiết
Trần Thanh Phương
23 tháng 8 2018 lúc 21:06

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2012}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{2011}{2012}\)

\(=\frac{1\cdot2\cdot...\cdot2011}{2\cdot3\cdot...\cdot2012}\)

\(=\frac{1}{2012}\)

Không Tên
23 tháng 8 2018 lúc 21:07

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2011}\right)\left(1-\frac{1}{2012}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2010}{2011}.\frac{2011}{2012}\)

\(=\frac{1.2.3...2010.2011}{2.3.4...2011.2012}\)

\(=\frac{1}{2012}\)

Kaori Miyazono
23 tháng 8 2018 lúc 21:07

Ta có \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\left(1-\frac{1}{5}\right)......\left(1-\frac{1}{2012}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.....\frac{2010}{2011}.\frac{2011}{2012}\)

\(=\frac{1.2.3.4.5...2010.2011}{2.3.4.5.6....2011.2012}\)

\(=\frac{1}{2012}\)

Vậy.....

Zone_kaly
Xem chi tiết
Quách Trần Gia Lạc
Xem chi tiết
 Mashiro Shiina
9 tháng 2 2018 lúc 22:17

\(A=\dfrac{\dfrac{1}{2013}+\dfrac{2}{2012}+\dfrac{3}{2011}+...+\dfrac{2011}{3}+\dfrac{2012}{2}+\dfrac{2013}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)

\(A=\dfrac{1+\left(\dfrac{1}{2013}+1\right)+\left(\dfrac{2}{2012}+1\right)+\left(\dfrac{3}{2011}+1\right)+...+\left(\dfrac{2012}{2}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)

\(A=\dfrac{\dfrac{2014}{2014}+\dfrac{204}{2013}+\dfrac{2014}{2012}+\dfrac{2014}{2011}+...+\dfrac{2014}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)

\(A=\dfrac{2014\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}=2014\)

Ma Sói
9 tháng 2 2018 lúc 22:23

mình ko chắc đúng nha !

Số số hạng của tử là :

(2013-1):1+1=2013(số hạng)

\(\dfrac{\dfrac{1}{2013}+\dfrac{2}{2012}+\dfrac{3}{2011}+.....+\dfrac{2011}{3}+\dfrac{2012}{2}+\dfrac{2013}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)

\(=\dfrac{\dfrac{1}{2013}+1+\dfrac{2}{2012}+1+....+\dfrac{2012}{2}+1+\dfrac{2013}{1}-2012}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)

\(=\dfrac{\dfrac{2014}{2013}+\dfrac{2014}{2012}+....+\dfrac{2014}{2}+1}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)

\(=2014\left(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\right)\)

=2014

Mình ghi thêm ở cái dâu bằng thứ 2 cuối cùng trên tử có ghi trừ 2012 là do tử có 2013 hạng tử mà mình chỉ cộng 1 cho 2012 hạng tử nên phải trừ đi 2012