Giải phương trình:
\(\sqrt[3]{x-3}+\sqrt[3]{x-7}=6\sqrt[6]{\left(x-3\right)\left(x-7\right)}\)
giải phương trình \(\sqrt[3]{x-7}+\sqrt[3]{x-3}=6\sqrt[6]{\left(x-3\right)\left(x-7\right)}\)
Đặt \(\hept{\begin{cases}\sqrt[6]{x-3}=a\\\sqrt[6]{x-7}=b\end{cases}}\)
\(\Rightarrow a^2+b^2-6ab=0\)
Dễ thây a = 0 không là nghiệm.
Đặt \(b=ta\)
\(\Rightarrow a^2+t^2a^2-6ta^2=0\)
\(\Leftrightarrow t^2-6t+1=0\)
Làm nôt
Giải phương trình
\(\sqrt[3]{x-7}-\sqrt[3]{x-3}=6\sqrt[6]{\left(x-3\right)\left(x-7\right)}\)
Giải bất phương trình sau :
\(\frac{\sqrt{x^2-x+6}+7\sqrt{x}-\sqrt{6\left(x^2+5x-2\right)}}{x+3-\sqrt{2\left(x^2+10\right)}}\le1\)
mình nghĩ sửa đề bài là \(\frac{\sqrt{x^2-x+6}+7\sqrt{x}-\sqrt{6\left(x^2+5x-2\right)}}{x+3-\sqrt{2\left(x^2+10\right)}}\le0\)
giải phương trình \(\sqrt[3]{\left(x-2\right)^2}+\sqrt[3]{\left(x+7\right)^2}-\sqrt[3]{\left(2-x\right)\left(x+7\right)}=3\)
Đặt \(\hept{\begin{cases}\sqrt[3]{2-x}=a\\\sqrt[3]{x+7}=b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2+b^2-ab=3\\a^3+b^3=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2+b^2-ab=3\\\left(a+b\right)\left(a^2-ab+b^2\right)=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2+b^2-ab=3\\a+b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}}\)hoặc \(\hept{\begin{cases}a=2\\b=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-6\end{cases}}\)
Giải phương trình : \(\sqrt[3]{\left(2-x\right)^2}+\sqrt[3]{\left(7-x\right)^2}-\sqrt[3]{\left(7+x\right)\left(2-x\right)}=3\)
giải phương trình
a. \(x^2+2x+7=3\sqrt{\left(x^2+1\right)\left(x+3\right)}\)
b. \(\sqrt{3x-1}+\sqrt{2-x}=3\)
c. \(\sqrt{x+9}+2016\sqrt{x+6}=2016+\sqrt{\left(x+9\right)\left(x+6\right)}\)
Giải phương trình sau:
1, \(\sqrt{5x+3}\) = \(\sqrt{3-\sqrt{2}}\)
2, \(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}\) = 2
3,\(\sqrt{-4x^2+25}=x\)
1. ĐKXĐ: $x\geq \frac{-3}{5}$
PT $\Leftrightarrow 5x+3=3-\sqrt{2}$
$\Leftrightarrow x=\frac{-\sqrt{2}}{5}$
2. ĐKXĐ: $x\geq \sqrt{7}$
PT $\Leftrightarrow (\sqrt{x}-7)(\sqrt{x}+7)=4$
$\Leftrightarrow x-49=4$
$\Leftrightarrow x=53$ (thỏa mãn)
Giải phương trình: \(\sqrt{\left(x^2+1\right)\left(x+3\right)\left(x^4+5\right)\left(x+7\right)}=\sqrt{\left(x+2\right)\left(x^4+4\right)\left(x+6\right)\left(x^2+8\right)}\)
Bài 1: Giải phương trình
\(\sqrt{x^2-25}-6=3\sqrt{x+5}-2\sqrt{x-5}\)
Bài 2: Cho biểu thức A = \(\dfrac{\sqrt{x}}{\sqrt{x}-3};\) B = \(\dfrac{7}{\sqrt{x}+1}-\dfrac{12}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}\) .
a) Rút gọn M = A – B
b) Tìm giá trị nguyên nhỏ nhất để biểu thức M đạt giá trị nguyên nhỏ nhất.
Giúp mình với, mình đang cần gấp ạ
\(1,ĐKx\ge5\)
\(\sqrt{\left(x-5\right)\left(x+5\right)}+2\sqrt{x-5}=3\sqrt{x+5}+6\)
\(\Rightarrow\sqrt{x-5}\left(\sqrt{x+5}+2\right)-3\left(\sqrt{x+5}+2\right)=0\)
\(\Rightarrow\left(\sqrt{x+5}+2\right)\left(\sqrt{x-5}-3\right)=0\)
\(\left[{}\begin{matrix}\sqrt{x+5}=-2loại\\\sqrt{x-5}=3\end{matrix}\right.\)\(\Rightarrow x-5=9\Rightarrow x=14\)(TMĐK)
2a,ĐK \(x\ge0;x\ne9\)
,\(B=\dfrac{7\left(3-\sqrt{x}\right)-12}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}=\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}\)
\(M=\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{9-7\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(M=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)