Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi quynh huong
Xem chi tiết
Huỳnh Quang Sang
18 tháng 4 2019 lúc 19:54

\(C=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{998\cdot999\cdot1000}\)

\(C=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{998\cdot999\cdot1000}\right]\)

\(C=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{998\cdot999}-\frac{1}{999\cdot1000}\right]\)

\(C=\frac{1}{2}\left[\frac{1}{2}-\frac{1}{999\cdot1000}\right]\)

Tính nốt :v

Ta có

\(C=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{998\cdot999\cdot1000}\)

\(\Rightarrow2C=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{998\cdot999\cdot1000}\)

\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{998\cdot999}-\frac{1}{999\cdot1000}\)

\(=\frac{1}{1\cdot2}-\frac{1}{999\cdot1000}\)

\(=\frac{1}{2}-\frac{1}{999000}\)

\(=\frac{499500}{999000}-\frac{1}{999000}\)

\(=\frac{499499}{999000}\)

\(\Rightarrow C=\frac{499499}{1998000}\)

đúng nha bạn nhớ k mik

Nguyễn Nam Kiệt
Xem chi tiết
Nguyễn Nhật Minh
27 tháng 4 2017 lúc 23:00

A= \(\frac{1}{1.2.3}\)\(\frac{1}{2.3.4}\)+ ... + \(\frac{1}{19.20.21}\)\(\frac{1}{4}\)

  = 1 - \(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{2}\)-  \(\frac{1}{3}\)\(\frac{1}{4}\)+ ... + \(\frac{1}{19}-\frac{1}{20}-\frac{1}{21}\)

  = 1 - ( \(\frac{1}{2}-\frac{1}{3}\)\(\frac{1}{2}-\frac{1}{3}\)) + ... + ( \(\frac{1}{19}-\frac{1}{20}+\frac{1}{19}-\frac{1}{20}\))  - \(\frac{1}{21}\)

  = 1 - \(\frac{1}{21}\)

  =  \(\frac{20}{21}\)<  \(\frac{1}{4}\)

=> Đề bài có sai ko bạn?

GT 6916
Xem chi tiết
Làm biếng quá
26 tháng 8 2018 lúc 15:39

Đặt C =\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow2C=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

             \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

              \(=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow C=\left(\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\div2\)

             

Dương Phạm
Xem chi tiết
Đào Đức Mạnh
6 tháng 8 2015 lúc 20:27

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{19.20.21}=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{19.20.21}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+...+\frac{1}{19.20}-\frac{1}{20.21}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{420}\right)=\frac{1}{2}.\frac{209}{420}=\frac{209}{840}\)

Lê Chí Cường
6 tháng 8 2015 lúc 20:29

=\(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{19.20.21}\right)\)

=\(\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{21-19}{19.20.21}\right)\)

=\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{19.20}-\frac{1}{20.21}\right)\)

=\(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{420}\right)=\frac{1}{2}.\frac{209}{420}=\frac{209}{840}\)

Hồ Thu Giang
6 tháng 8 2015 lúc 20:31

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{19.20.21}\)

\(\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+.....+\frac{21-19}{19.20.21}\right)\)

\(\frac{1}{2}.\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+....+\frac{21}{19.20.21}-\frac{19}{19.20.21}\right)\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{19.20}-\frac{1}{20.21}\right)\)

\(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{20.21}\right)\)

\(\frac{1}{2}.\frac{209}{420}\)

\(\frac{209}{840}\)

Melissa Nguyen
Xem chi tiết
Nguyễn Mạnh Tuấn
24 tháng 4 2016 lúc 9:16

Đặt

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37.38.39}\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{37.38.39}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}=\frac{1}{1.2}-\frac{1}{38.39}=\frac{1}{2}-\frac{1}{1428}\Rightarrow A=\left(\frac{1}{2}-\frac{1}{1428}\right):2=\frac{713}{1428}.\frac{1}{2}\)

=>S=\(\frac{713}{1428}.\frac{1}{2}.1428+185.8=\frac{713}{2}+185.8=\frac{713}{2}+1480=356+\frac{1}{2}+1480=1836\frac{1}{2}\)

nguyễn thảo hân
Xem chi tiết
chaukienquoc
24 tháng 4 2016 lúc 10:44

S=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)\)+\(\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)\)+..............+\(\frac{1}{2}\left(\frac{1}{37.38}-\frac{1}{38.39}\right)\).1428+185.8

S=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+........\frac{1}{37.38}-\frac{1}{38.39}\right).\)1428+185.8

S=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\).1428+185.8

S=\(\frac{185}{741}\).1428+1480

S=1836,518219

Ngô Hồng Thuận
Xem chi tiết
Trần Anh Tài
21 tháng 3 2015 lúc 11:26

T/c:A=1/1*2*3+1/2*3*4+1/3*4*5+1/4*5*6+...+1/97*98*99+1/98*99*100

2A=2/1*2*3+2/2*3*4+2/3*4*5+2/4*5*6+...+2/97*98*99+1/98*99*100

2A=(1/1*2-1/2*3)+(1/2*3-1/3*4)+(1/3*4-1/4*5)+.....+(1/97*98-1/98*99)+(1/98*99-1/99*100)

2A=1/2+1/99*100

A=tự tính nha

saka
19 tháng 2 2018 lúc 10:11

A= [(1/2-1/2*3)/2]+[(1/2-1/3*4)/2]+...+[(1/2-1/99*100)/2]

A=(1/2-1/99*100)/2

A=-101/198/2

A=-101/396

Vân Anh
Xem chi tiết
Vương Hải Nam
11 tháng 4 2019 lúc 20:59

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

Phạm Hải Yến
Xem chi tiết
Huỳnh Quang Sang
15 tháng 5 2019 lúc 9:30

\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{2018\cdot2019\cdot2020}\)

\(=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{2018\cdot2019\cdot2020}\right]\)

\(=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\right]\)

Đến đây tự tính được rồi:v

 Bạch Dương
15 tháng 5 2019 lúc 11:15

   Đặt tổng trên là A

Ta có:

\(2A=2\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{2018\cdot2019\cdot2020}\right)\)

\(=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{2018\cdot2019\cdot2020}\)

\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\)

\(=\frac{1}{2}-\frac{1}{2019\cdot2020}\)

\(A=\left(\frac{1}{2}-\frac{1}{2019\cdot2020}\right)\div2\)

        *Làm tiếp*

                                          \(#Louis\)

Cá Chép Nhỏ
15 tháng 5 2019 lúc 15:00

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2018.2019.2020}\)

\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2018.2019.2020}\)

Thấy : \(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

Áp dụng : 

+ Với n = 1 có : \(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)

+ Với n = 2 có : \(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\)

....

+ Với n = 2019 có : \(\frac{2}{2018.2019.2020}=\frac{1}{2018.2019}-\frac{1}{2019.2020}\)

Cộng từng vế có :

\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2018.2019}-\frac{1}{2019.2020}\)

\(2A=\frac{1}{2}-\frac{1}{2019.2020}\)

   \(A=\left(\frac{1}{2}-\frac{1}{2019.2020}\right):2\)

   \(A=\left(\frac{1}{2}-\frac{1}{2019.2020}\right).\frac{1}{2}\)

   \(A=\frac{1}{4}-\frac{1}{2019.2020.2}\)

   Đến đây tắc dồi >: