Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cô gái thất thường (Ánh...
Xem chi tiết
Cô gái thất thường (Ánh...
17 tháng 12 2018 lúc 21:20

ai lm hộ mk vs

Ƹ̴Ӂ̴Ʒ ♐  ๖ۣۜMihikito ๖ۣ...
18 tháng 12 2018 lúc 19:10

b1: 

ĐKXĐ: \(x\ne0;x\ne\pm2\)

Ta có : \(A=\left(\frac{4x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{8x^2}{x^2-4}\right)\left(\frac{x-1}{x\left(x-2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)}\right)\)

\(=\left(\frac{4x^2-8x-8x^2}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{x-1-2x+4}{x\left(x-2\right)}\right)\)

\(=\left(\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{3-3x}{x\left(x-2\right)}\right)\)

\(=\frac{12\left(x-1\right)}{x-2}\)

Vậy ....

Ta có : \(A< 0\Rightarrow\frac{12\left(x-1\right)}{x-2}< 0\)

Đến đây xét 2 TH 12(x-1)<0 & (x-2)>0 hoặc 12(x-1)>0 & (x-2)<0

Ƹ̴Ӂ̴Ʒ ♐  ๖ۣۜMihikito ๖ۣ...
18 tháng 12 2018 lúc 21:33

b2 :

b) Ta có: \(18x^2-3xy-5y=25\Leftrightarrow9x^2-3xy+\frac{1}{4}y^2+9x^2-\frac{1}{4}y^2-5y-25=0\)

\(\Leftrightarrow\left(3x-\frac{1}{2}y\right)^2+9x^2-\left(\frac{1}{2}y+5\right)^2=0\Leftrightarrow\left(3x-\frac{1}{2}y\right)^2-25+\left(3x-\frac{1}{2}y-5\right)\left(3x+\frac{1}{2}y+5\right)=-25\)

\(\Leftrightarrow\left(3x-\frac{1}{2}y+5\right)\left(3x-\frac{1}{2}y-5\right)+\left(3x-\frac{1}{2}y-5\right)\left(3x+\frac{1}{2}y+5\right)=-25\)

\(\Leftrightarrow\left(3x-\frac{1}{2}y-5\right)\left(6x+10\right)=-25\Leftrightarrow\left(6x-y-10\right)\left(3x+5\right)=-25\)

đến đây xét các TH. Ví dụ 1 TH :

\(\hept{\begin{cases}6x-y-10=1\\3x+5=-25\end{cases}\Rightarrow\hept{\begin{cases}y=-41\\x=-10\end{cases}}\left(tm\right)}\)

Làm tương tự với các TH còn lại

Ngo Anh
Xem chi tiết
tống thị quỳnh
Xem chi tiết
Thắng Nguyễn
10 tháng 8 2017 lúc 22:47

post từng câu một thôi bn nhìn mệt quá

Đinh Thị Thảo Vi
Xem chi tiết
Nguyễn Thái Hà
Xem chi tiết
Hiếu
10 tháng 4 2018 lúc 22:40

=> \(\frac{ay+bx}{xy}=\frac{bz+cy}{yz}=\frac{cx+az}{zc}\) <=> \(\frac{a}{x}+\frac{b}{y}=\frac{b}{y}+\frac{c}{z}=\frac{c}{z}+\frac{a}{c}\) 

<=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=k\)=> \(x=ak\) ; \(y=bk\) ; \(z=ck\) (2)

Gọi giả thiết là (1)  Thay 2 vào 1 ta đc : \(k=\frac{1}{2}\)

=> Kết hợp k=1/2 với 2 ta được: a=x/2 ; b=y/2 và c=z/2

Lê Thị Hải Anh
2 tháng 8 2018 lúc 16:18

bạn lầu trên ơi, a/x=b/y=c/x=k thì x=a/k chứ bạn đâu phải x=ak đâu.

Phạm Minh
Xem chi tiết
Phạm Minh
16 tháng 6 2020 lúc 20:40

Ai giúp em với ạ

Khách vãng lai đã xóa
Nguyễn Linh Chi
16 tháng 6 2020 lúc 21:06

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

Khách vãng lai đã xóa
Nguyễn Linh Chi
16 tháng 6 2020 lúc 21:12

2. \(y^2+1\ge1>0;2x^2+x+1>0\) với mọi x; y 

=> x + 5 > 0 

=>  \(y^2+1=\frac{x+5}{2x^2+x+1}\ge1\)

<=> \(x+5\ge2x^2+x+1\)

<=> \(x^2\le2\)

Vì x nguyên => x = 0 ; x = 1; x = -1 

Với x = 0 ta có: \(y^2+1=5\Leftrightarrow y=\pm2\)

Với x = 1 ta có: \(y^2+1=\frac{3}{2}\)loại vì y nguyên 

Với x = -1 ta có: \(y^2+1=2\Leftrightarrow y=\pm1\)

Vậy Phương trình có 4 nghiệm:...

Khách vãng lai đã xóa
Lê Thanh Quang
Xem chi tiết
Nguyễn Linh Chi
10 tháng 6 2020 lúc 18:22

1) \(21x^2+21y^2+z^2\)

\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)

\(\ge9\left(x+y\right)^2+z^2+3.2xy\)

\(\ge2.3\left(x+y\right).z+6xy\)

\(=6\left(xy+yz+zx\right)=6.13=78\)

Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6

Khách vãng lai đã xóa
Nguyễn Linh Chi
10 tháng 6 2020 lúc 18:31

2) \(x+y+z=3xyz\)

<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)

Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3

Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)

Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)

\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)

Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)

Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\)\(b=2\sqrt{\frac{3}{5}}\)

khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)

Khách vãng lai đã xóa
Cô Nàng Lạnh Lùng
Xem chi tiết
Lê Quốc Vương
Xem chi tiết