cho A= 2^1 + 2^2 + 2^3 +....+ 2^60
chứng minh A chia hết cho 3 và 15
a)cho A=2+2^2+2^3+...+2^60.chứng minh rằng A chia hết cho 3,7 và 15
b)cho B=3+3^3+3^4+...+3^1991.chứng minh rằng B chia hết cho 13 và 41
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
A= (2 +22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260).
= 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 22 + 23) + ... + 257 x (1 + 2 + 22 + 23).
= 2 x 15 + 25 x 15 + ... + 257 x 15.
= 15 x ( 2 + 24 + ... + 258).
Vì A = 15 x ( 2 + 24 + ... + 258) nên A chia hết cho 15.
Ta có: B= 3 + 33 + 35 + ... + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + ... + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + ... + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + ... + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + ... + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + ... + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41.
a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)
\(=3\times91+3^7\times91+...+3^{1987}\times91\)
\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)
\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)
Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.
b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)
\(=3\times820+...+3^{1985}\times820\)
\(=3\times20\times41+...+3^{1985}\times20\times41\)
\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)
Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.
Cho A = 2+2^2+2^3+...+2^60 . chứng minh rằng A chi hết cho 3,7 và 15.
Cho B = 3+ 3^3+3^5+.....+3^1991. Chứng minh rằng B chia hết cho 13 và 41
A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}
={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}
=2{1+2}+2^3{1+2}+...+2^59{1+2}
=2.3+2^3.3+.....+2^59.3
=3.(2+2^3+...+2^59)
vi co thua so 3 => tich do chia het cho 3
A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}
={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}
=2{1+2}+2^3{1+2}+...+2^59{1+2}
=2.3+2^3.3+.....+2^59.3
=3.(2+2^3+...+2^59)
vi co thua so 3 => tich do chia het cho 3
Cho A=2+2^2+2^3+...+2^60 . Chứng minh A chia hết cho 3,7 và 15
A=(2+2^2)+...+(2^59+2^60)
=2(1+2)+...+2^59(1+2)
=3(2+2^3+...+2^59)
nên A chia hết cho 3.
A= (2+2^2+2^3)+...+(2^58+2^59+2^60)
=2(1+2+2^2)+...+2^58(1+2+2^2)
=7(2+2^4+..+2^58)
nên A chia hết cho 7
A= (2+2^2+2^3+2^4)+....+(2^57+2^58+2^59+2^6...
=2(1+2+2^2+2^3)+....+2^57(1+2+2^2+2^3)...
=15(2+2^5+...+2^57)
nên A chia hết cho 15
Bài 1: Cho A=119+118+117+...+11+1 Chứng minh A chia hết cho 5
Bài 2 :
a) Cho A=2+22+23+...+260 Chứng minh A chia hết cho 3 ; 7 và 15
b) Cho B=3+33+35+...+31991 Chứng minh B chia hết cho 13 và 41
Chứng minh rằng
a)14^14 - 1 chia hết cho 3
b)A=2+2^2+2^3+...+2^60 chia hết cho 15
1, Chứng minh: A= 2+2^2+2^3+..........................+2^59+2^60
a, A chia hết cho 3
b, A chia hết cho 7
c, A chia hết cho 15
A = 2 + 22 + 23 + ... + 260
= (2 + 22) + (23 + 24) + ... + (259 + 260)
= 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)
= 2.3 + 23.3 + ... + 259.3
= 3.(2 + 23 + ... + 259) chia hết cho 3
A = 2 + 22 + 23 + ... + 260
= (2 + 22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260)
= 2.(1 + 2 + 22) + 24.(1 + 2 + 22) + ... + 258.(1 + 2 + 22)
= 2.7 + 24.7 + ... + 258.7
= 7.(2 + 24 + ... + 258) chia hết cho 7
A = 2 + 22 + 23 + ... + 260
= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260)
= 2.(1 + 2 + 22 + 23) + 25.(1 + 2 + 22 + 23) + ... + 257.(1 + 2 + 22 + 23)
= 2.15 + 25.15 + ... + 257.15
= 15.(2 + 25 + ... + 257) chia hết cho 15
a)A= 2+2^2+2^3+...+2^59+2^60
A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^59+2^60)
A=2.(1+2)+2^3.(1+2)+2^5.(1+2)+...+2^59.(1+2)
A=2.3+2^3.3+2^5.3+...+2^59.3
A=3.(2+2^3+2^5+...+2^59)
=>A chia hết cho 3
Vậy A chia hết cho 3
b)A= 2+2^2+2^3+..........................+2^59+2^60
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^58+2^59+2^60)
A=2.(1+2+2^2)+2^4.(1+2+2^2)+2^7.(1+2+2^2)+...+2^58.(1+2+2^2)
A=2.7+2^4.7+2^7.7+...+2^58.7
A=7.(2+2^4+2^7+...+2^58)
=>A chia hết cho 7
Vậy A chia hết cho 7
c)A= 2+2^2+2^3+..........................+2^59+2^60
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+(2^9+2^10+2^11+2^12)+...+(2^57+2^58+2^59+2^60)
A=2.(1+2+2^2+2^3)+2^5.(1+2+2^2+2^3)+2^9.(1+2+2^2+2^3)+...+2^57.(1+2+2^2+2^3)
A=2.15+2^5.15+2^9.15+...+2657.15
A=15.(2+2^5+2^9+...+2^57)
=>A chia hết cho 15
Vậy A chia hết cho15
1) Tìm x thuộc N để A, B chia hết cho 2 :
A = 18 + 8 + 12 + x
B = 76 + 9 + x
2) Cho a thuộc N biết a Chia hết cho 12 dư 8. Hỏi a có chia hết cho 4 và 6 không ?
3) Chứng minh rằng :
a, 10^28 + 8 chia hết cho 72
b, 8^8 + 2^20 chia hết cho 1
6) Cho A= 2 + 2^2 + 2^3 + ........ + 2^60
Chứng minh A chia hết cho 3, 7, 15
a) cho A = 2 + 22 + 23 +....+ 260 . Chứng minh rằng A chia hết cho 3,7 và 15 .
b) cho B = 3 + 33 + 35 + ...+ 31991. Chứng minh rằng B chia hết cho 13 và 41 .
cho a+b+c=0 cmr
a^3 + b^3+a^2c+b^2c-abc=0
A=2+22+23+...+260
A=(2+22+23)+...+(258+259+260)
A=12.1+...+257.(2+22+23)
A=12.1+...+257.12
A=12.(1+...+257)chia hết cho 3 vì 12 chia hết cho 3
tương tự chia lần lượt thành 4 nhóm ,5 nhóm :b)thì chia lần lượt thành 3 nhóm,4 nhóm
a) cho A =2+22+23+...+260 . chứng minh rằng A chia hết cho 3,7 và 15
b) cho B =3+33+35+...+31991. chứng minh rằng B chia hết cho 13 và 41