giải phương trình
\(\frac{\sqrt{x+5}}{\sqrt{x-4}}=\frac{\sqrt{x-2}}{\sqrt{x+3}}\)
Giải phương trình:
\(a)\sqrt{x^2+2x+4}\ge x-2\\ b)x=\sqrt{x-\frac{1}{x}}+\sqrt{x+\frac{1}{x}}\\ c)\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}\\ d)x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ e)\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Bạn xem lại đề câu b và c nhé !
a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)
\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)
\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ
\(\Rightarrow x\ge2\) thỏa mãn đề.
d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)
Pt tương đương :
\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )
e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)
\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)
Phương trình (1) tương đương :
\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )
Bài 3 giải phương trình
a) \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=4-x\)
b) \(\frac{\sqrt{x}+5}{\sqrt{x}-4}=\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
a) \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=4-x\)
ĐKXĐ : x ≥ 0
⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=-\left(x-4\right)\)
⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)=0\)
⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}+x+2\right)=0\)
⇔ \(7\left(\sqrt{x}-2\right)=0\)
⇔ \(\sqrt{x}-2=0\)
⇔ \(\sqrt{x}=2\)
⇔ \(x=4\)( tm )
b) \(\frac{\sqrt{x}+5}{\sqrt{x}-4}=\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne16\end{cases}}\)
⇔ \(\left(\sqrt{x}+5\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)\)
⇔ \(x+8\sqrt{x}+15=x-6\sqrt{x}+8\)
⇔ \(x+8\sqrt{x}-x+6\sqrt{x}=8-15\)
⇔ \(14\sqrt{x}=-7\)
⇔ \(\sqrt{x}=-2\)( vô lí )
=> Phương trình vô nghiệm
Giải phương trình bậc nhất 1 ẩn sau đây:
\(\frac{2+\sqrt{3}}{3-\sqrt{5}}x-\frac{1-\sqrt{6}}{3+\sqrt{2}}\left(x-\frac{3-\sqrt{7}}{4-\sqrt{3}}\right)=\frac{15-\sqrt{11}}{2\sqrt{3}-5}\)
GIẢI PHƯƠNG TRÌNH (giải giùm vs ^^)
\(\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}}=\frac{3}{2}\sqrt{\frac{x}{x+\sqrt{x}}}\)
\(\left(x+2\right)\left(x+4\right)+5\left(x+2\right)\sqrt{\frac{x+4}{x+2}}=6\)
\(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{2}}=5\)
giải phương trình :
\(\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{5\sqrt{x}}{\sqrt{x}+3}=\frac{22}{x-9}\)
\(\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{5\sqrt{x}}{\sqrt{x}+3}=\frac{22}{x-9}\left(ĐK:x\ge0;x\ne9\right)\)
\(\Leftrightarrow\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)-5\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}=\frac{22}{x-9}\)
\(\Rightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)-5\sqrt{x}\left(\sqrt{x}-3\right)=22\)
\(\Leftrightarrow x+5\sqrt{x}+6-5x+15\sqrt{x}=22\)
\(\Leftrightarrow-4x+20\sqrt{x}-16=0\)
\(\Leftrightarrow x-5\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-4=0\\\sqrt{x}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=16\left(tm\right)\\x=1\left(tm\right)\end{cases}}}\)
Vậy tập nghiệm của phương trình đã cho là : \(S=\left\{1;16\right\}\)
Chúc bạn học tốt !!!
giải phương trình
1) \(\sqrt{x-1}+\sqrt{2x-1}=5\)
2) \(\frac{1}{\sqrt{x}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+4}}+\frac{1}{\sqrt{x+4}+\sqrt{x+6}}=\frac{\sqrt{10}}{2}-1\)
1) đặt đk rùi bình phương 2 vế là ok
2) \(pt\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+2}}{x-x-2}+\frac{\sqrt{x+2}-\sqrt{x+4}}{x+2-x-4}+\frac{\sqrt{x+4}-\sqrt{x+6}}{x+4-x-6}=\frac{\sqrt{10}}{2}-1\)(ĐKXĐ : \(x\ge0\))
<=> \(\frac{\sqrt{x}-\sqrt{x+6}}{-2}=\frac{\sqrt{10}}{2}-1\)
<=> \(\frac{\sqrt{x+6}-\sqrt{x}}{2}=\frac{\sqrt{10}-2}{2}\)
<=> \(\sqrt{x+6}-\sqrt{x}=\sqrt{10}-2\)
<=> \(\sqrt{x+6}+2=\sqrt{10}+\sqrt{x}\)
đến đây bình phương 2 vế rùi giải bình thường nhé
GIẢI PHƯƠNG TRÌNH : \(\frac{3}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{x}}{\sqrt{y}+2}+\frac{\sqrt{y}}{5}+\frac{2}{\sqrt{x}+3}=\)3
Giải phương trình \(\frac{3}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{x}}{\sqrt{y}+2}+\frac{\sqrt{y}}{5}+\frac{2}{\sqrt{x}+3}=2\)
Giải phương trình:
\(9+\sqrt{5}x^3+5x+\frac{\sqrt{5}}{x^3}=3\sqrt{5}x^2+3x+\frac{3\sqrt{5}-1}{x}+\frac{3}{x^2}\)