cho a,b,c>0 thoả mãn abc=1
cmr:
\(\sum\sqrt[4]{\dfrac{a+b}{c+1}}\) >=3
cho 3 số a, b, c thoả mãn 0 < a, b, c < 1.CMR
\(\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\ge\dfrac{3}{3+abc}\)
Bài 1: Cho a, b, c > 1. CMR: \(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge3\sqrt[3]{abc}\)
Bài 2: Cho các số x, y, z > 0 thoả mãn: \(\dfrac{x\left(y+z-x\right)}{logx}=\dfrac{y\left(z+x-y\right)}{logy}=\dfrac{z\left(x+y-z\right)}{logz}\). CMR: xy.yx = yz.zy = xz.zx
Cho các số thực dương a, b, c thoả mãn:
\(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}=\dfrac{3}{2}\)
Cmr: \(a^2+b^2+c^2=\dfrac{3}{2}\)
Cho các số thực: 0\(\le\)a\(\le\)1; 0\(\le\)b\(\le\)1; 0\(\le\)c\(\le\)1 thoả mãn:
\(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}=\dfrac{3}{2}\)
Chứng minh: \(a^2+b^2+c^2=\dfrac{3}{2}\)
Áp dụng BĐT cosi:
\(a\sqrt{1-b^2}=\sqrt{a^2\left(1-b^2\right)}\le\dfrac{a^2+1-b^2}{2}\)
Tương tự cx có: \(b\sqrt{1-c^2}\le\dfrac{b^2+1-c^2}{2}\)
\(c\sqrt{1-a^2}\le\dfrac{c^2+1-a^2}{2}\)
Cộng vế với vế \(\Rightarrow VT\le\dfrac{3}{2}\)
Dấu = xảy ra <=> \(\left\{{}\begin{matrix}a^2=1-b^2\\b^2=1-c^2\\c^2=1-a^2\end{matrix}\right.\) \(\Leftrightarrow a^2+b^2+c^2=3-\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2=\dfrac{3}{2}\) (đpcm)
Cho 3 số thực dương a,b.c thỏa mãn abc=1 cmr:\(\dfrac{b+c}{\sqrt{a}}+\dfrac{c+a}{\sqrt{b}}+\dfrac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
cho a,b dương và c ≠ 0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\). CMR: \(\sqrt{a+b}=\sqrt{b+c}+\sqrt{c+a}\)
Từ 1a+1b+1c=0⇒ab+bc+ac=01a+1b+1c=0⇒ab+bc+ac=0
Khi đó:
(√a+c+√b+c)2=a+c+b+c+2√(a+c)(b+c)(a+c+b+c)2=a+c+b+c+2(a+c)(b+c)
=a+b+2c+2√ab+ac+bc+c2=a+b+2c+2√c2=a+b+2c+2ab+ac+bc+c2=a+b+2c+2c2
=a+b+2c+2|c|=a+b+2c+2|c|
Vì a,ba,b dương nên −1c=1a+1b>0⇒c<0⇒2|c|=−2c−1c=1a+1b>0⇒c<0⇒2|c|=−2c
Do đó:
(√a+c+√b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b(a+c+b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b
⇒√a+c+√b+c=√a+b
Từ 1a+1b+1c=0⇒ab+bc+ac=01a+1b+1c=0⇒ab+bc+ac=0
Khi đó:
(√a+c+√b+c)2=a+c+b+c+2√(a+c)(b+c)(a+c+b+c)2=a+c+b+c+2(a+c)(b+c)
=a+b+2c+2√ab+ac+bc+c2=a+b+2c+2√c2=a+b+2c+2ab+ac+bc+c2=a+b+2c+2c2
=a+b+2c+2|c|=a+b+2c+2|c|
Vì a,ba,b dương nên −1c=1a+1b>0⇒c<0⇒2|c|=−2c−1c=1a+1b>0⇒c<0⇒2|c|=−2c
Do đó:
(√a+c+√b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b(a+c+b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b
⇒√a+c+√b+c=√a+b
Cho a,b,c dương thoả mãn: abc≥1. CMR:
\(\left(a+\dfrac{1}{a+1}\right).\left(b+\dfrac{1}{b+1}\right).\left(c+\dfrac{1}{c+1}\right)\ge\dfrac{27}{8}\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
$\text{VT}=[\frac{a+1}{4}+\frac{1}{a+1}+\frac{3}{4}a-\frac{1}{4}][\frac{b+1}{4}+\frac{1}{b+1}+\frac{3}{4}b-\frac{1}{4}][\frac{c+1}{4}+\frac{1}{c+1}+\frac{3}{4}c-\frac{1}{4}]$
$\geq [2\sqrt{\frac{1}{4}}+\frac{3}{4}a-\frac{1}{4}][2\sqrt{\frac{1}{4}}+\frac{3}{4}b-\frac{1}{4}][2\sqrt{\frac{1}{4}}+\frac{3}{4}c-\frac{1}{4}]$
$=\frac{3}{4}(a+1).\frac{3}{4}(b+1).\frac{3}{4}(c+1)$
$=\frac{27}{64}(a+1)(b+1)(c+1)$
$\geq \frac{27}{64}.2\sqrt{a}.2\sqrt{b}.2\sqrt{c}$
$=\frac{27}{64}.8\sqrt{abc}\geq \frac{27}{64}.8=\frac{27}{8}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Cho \(a,b,c\) thỏa mãn \(\dfrac{a^3-1}{a}=\dfrac{b^3-1}{b}=\dfrac{c^3-1}{c}\)
CMR \(abc+1=0\)
Cho $a=b=c=1$ thì thỏa mãn đẳng thức nhưng $abc+1=2\neq 0$
Bạn xem lại đề.
cho a,b,c>0 thỏa mãn a+b+c=1. CMR: \(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{3}{2}\)