Tam giác ABC vuông tại A có góc B = 30° , AB = 3cm . Tính các độ dài AC , BC .
Bài 1: Cho tam giác ABC vuông tại A có góc C = 60° và AC = 1 (đơn vị độ dài). Tính độ dài BC và AB
Bài 2 : Cho tam giác ABC nhọn, các đường trung tuyến BD, CE vuông góc vs nhau. Giả sử AB = 6cm, AC = 8cm. Tính độ dài BC?
Cho mình hỏi một bài hình học lớp 8 các bạn làm ơn giải giúp mình. đề bài như sau:
Cho tam giác ABC vuông tại A, có AB= 3cm, AC=5cm, đường phận giác AD. Đường vuông góc với DC cắt AC ở E
a) Chứng minh rằng tam giác ABC và tam giác DEC đồng dạng
b) Tính độ dài các đoạn thẳng BC, BD
c) Tính độ dài AD
d) Tính diện tích tam giác ABC và diện tích tứ giác ABDE.
Cho tam giác ABC vuông tại A có góc C = 60° và AC = 1 (đơn vị độ dài). Tính độ dài BC và AB
Kẻ trung tuyến AM
TAm giác ABC có AM là trung tuyến
=> AM = MC=1/2 BC
TAm giác AMC có AM =MC và C = 60 độ => tam giác AMC đều
=> AC = AM = 1
ta lại có AM = 1/2 BC => BC= 2AM = 2.1 = 2
TAm giác ABC vuông tại A , theo py ta go
AB^2 + AC^2 = BC ^2
=> AB ^2 = BC^2 - AC^2
= > AB^2 = 2^2 - 1^2
= 4 - 1 = 3
=>AB = căn 3
Cho tam giác ABC cân tại A, có góc A = 30 độ, BC = 2cm. Trên cạnh AC lấy D, sao cho góc CBD = 60 độ. Tính độ dài AD
Giups
Cách 3: (Lớp 8) Trên nửa mặt phẳng bờ AC không chứa B, dựng tam giác đều ACG.
Có ngay AB = AC = AG và ^BAG = ^BAC + ^CAG = 900 => \(\Delta\)BAG vuông cân tại A
Suy ra ^CBG = ^ABC - ^ABG = 300 = ^DAB (1)
Cũng dễ thấy ^ADB = 1350; ^BCG = ^ACB + ^ACG = 1350 => ^BCG = ^ADB (2)
Từ (1) và (2) suy ra \(\Delta\)CGB ~ \(\Delta\)DBA (g.g). Từ đây \(\frac{AD}{BC}=\frac{AB}{BG}=\frac{1}{\sqrt{2}}\)
Vậy \(AD=\frac{BC}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)(cm).
Trên nửa mặt phẳng bờ BC chứa A dựng \(\Delta\)BCE vuông cân tại E
Khi đó ^EBA = ^ABC - ^EBC = 300 = ^DAB
\(\Delta\)AEC = \(\Delta\)AEB (c.c.c) => ^EAB = ^BAC/2 = 150 = ^DBA
Xét \(\Delta\)BEA và \(\Delta\)ADB có: AB chung, ^EAB = ^DBA, ^EBA = ^DAB
=> \(\Delta\)BEA = \(\Delta\)ADB (g.c.g) => AD = BE = \(\frac{BC}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)(cm).
Cách 2: Trên nửa mặt phẳng bờ AC không chứa B dựng \(\Delta\)ADF vuông cân tại D.
Có ^BDF = 3600 - 900 - ^ADB = 1350 = ^BDA. Do đó \(\Delta\)DAB = \(\Delta\)DFB (c.g.c)
=> ^ABF = 2.^ABD = 300 = ^BAC. Kết hợp với BF = AB = AC suy ra \(\Delta\)BAF = \(\Delta\)ABC (c.g.c)
=> AF = BC hay \(AD\sqrt{2}=BC=2\). Vậy nên \(AD=\frac{2}{\sqrt{2}}=\sqrt{2}\)(cm).
1) CM định lí: Hai góc nhọn có cạnh tương ứng vuông góc với nhau thì bằng nhau
2) Cho△ABC (AB<AC). Trên cạnh AC có 1 điểm D thỏa mãn điều kiện góc DBC=C và góc ADB=ABD; A=76 độ. Tính góc B, D
3) Cho △ ABC, biết góc A=30 độ. Kẻ các tia phân giác BD và CE của các góc B và C. Biết AEC=ADB. Tính các góc B,C của △ ABC
4) Cho △ ABC, biết góc B=30 độ+góc C. Tia phân giác của góc A cátư BC tại D
a) Tính góc ADB
b) Gỉa sử góc A= 74 độ. Tính các góc B,C. CMR độ lớn của góc ADB ko phụ thuộc vào góc A
5) Cho △ ABC vuông tại A. Kẻ đường cao AH, trung tuyến AM(M là trung điểm BC), phân giác AD. Gỉa sử các tia AH, AM chia góc A ra làm 3 góc bằng nhau
a) CMR AD cũng là phân giác góc HDM
b) Tính góc B và C của △ABC và góc HDM
HELP ME. Mai22/8 18:30mik đi học rồi
Cả buối ấy Huy làm thịt được bốn con gà, tất cả đều là gà trống và không có bất cứ một con gà mái nào. Huy cũng cảm thấy có đôi chút kỳ lạ, bởi vì trong chuống gà của nhà ông Phúc, tại sao lại không hề có một con gà mái nào, gà con cũng không hề có, mà chỉ toàn là gà trống như vậy? Nhưng vấn đề ấy Huy cũng chỉ nghĩ một lúc, rồi lại tự lắc đầu cho rằng mình toàn tự hỏi vớ vẩn linh tinh mấy cái chuyện không đâu.
Làm thịt xong mấy con gà trống, thì mặt trời cũng đã đứng bóng, Huy vội xách mấy con gà đã làm thịt vào nhà đặt vào chiếc nồi nhôm to bằng cái thúng, hết lượt cả bốn con gà đều được sắp đặt ngay ngắn, chiếc cổ gà đều được dúi gọn xuống ngập nồi nước.
Huy toan đóng nắp nồi, thì một cảnh tượng kinh khủng hiện ra. Cái con gà trống anh vừa mới cắt cổ mới đây lại đang nghển cổ dậy kêu quang quác như một con chim lợn. Cái tiếng kêu của nó không phải là thứ âm thanh mà đáng ra giống loài của nó không nên xuất hiện.
Éc éc!
Cho tam giác ABC có AB= 12cm, AC=18cm.Gọi H là chân đường vuông góc kẻ từ B đến phân giác góc  (phân giác  cắt AC tại E).Gọi M là trung điểm của BC. Tính độ dài HM.(vẽ hình giùm mình lun nha)
Bài 1:Cho tam giác nhọn ABC Kẻ AH vuông góc với BC(H thuộc BC), AB=13 cm. AH=12 cm. HC=16 cm. Tính độ dài đoạn thẳng AC,BC
Bài 2: Cho tam giác ABC vuông tại A. Một đường thẳng cắt cạnh AB,AC ở D và E.Chứng minh CD2-CB2=ED2-EB2
Bài 3: Cho tam giác ABC vuông tại A có AB:AC=8:15 và BC=51 cm
a/ Tính độ dài AB,AC
b/ Tính diện tích tam giác ABC
4/Cho tam giác ABC cân tại A vẽ BC,CE lần lượt vuông góc với AC và AB. Gọi I là giao điểm của BD và CE
a/ Chứng minh rằng tam giác AEI=tam giác ADI
b/ Gọi M là trung điểm BC. Chứng minh 3 điểm A,I,M thẳng hàng.
AI KO LÀM THÌ ĐỪNG CMT DÙM CÁI!
Bai 1:
Ap dung dinh li Py-ta-go vao tam giac AHB ta co:
AH^2+BH^2=AB^2
=>12^2+BH^2=13^2
=>HB=13^2-12^2=25
Tuong tu voi tam giac AHC
=>AC=20
=>BC=25+16=41
Cho tam giác ABC vuông tại A có AB = 3 cm, AC = 6 cm. Gọi E là trung điểm của AC. Phân giác của góc A cắt BC tại D.
Tính độ dài BC.Chứng minh hai tam giác BAD và EAD bằng nhau.ED cắt AB tại M. Chứng minh hai tam giác BAC và EAM bằng nhau. Từ đó suy ra tam giác MAC vuông cân.So sánh ME và MCMong các bạn giúp đỡ!!!
Các bạn nhanh nhanh hộ mình nha!
Cho tam giác ABC vuông tại A có AB = 3 cm, AC = 6 cm. Gọi E là trung điểm của AC. Phân giác của góc A cắt BC tại D.
Tính độ dài BC.Chứng minh hai tam giác BAD và EAD bằng nhau.ED cắt AB tại M. Chứng minh hai tam giác BAC và EAM bằng nhau. Từ đó suy ra tam giác MAC vuông cân.So sánh ME và MCMong các bạn giúp đỡ!!!
Các bạn nhanh nhanh hộ mình nha!
(Bạn tự vẽ hình giùm)
1/ \(\Delta ABC\)vuông tại A
=> \(BC^2=AB^2+AC^2\)(định lý Pitago)
=> \(BC^2=9^2+6^2\)
=> \(BC^2=9+36\)
=> \(BC^2=45\)
=> \(BC=\sqrt{45}\)(cm)
2/ Ta có: \(AE=EC=\frac{AC}{2}=\frac{6}{2}\)= 3 (cm)
\(\Delta BAD\)và \(\Delta EAD\)có: BA = EA (= 3cm)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác \(\widehat{A}\))
Cạnh AD chung
=> \(\Delta BAD\)= \(\Delta EAD\)(c. g. c) (đpcm)
3/ \(\Delta ABC\)và \(\Delta AME\)có: \(\widehat{A}\)chung
AB = AE (\(\Delta BAD\)= \(\Delta EAD\))
\(\widehat{ABC}=\widehat{AEM}\)(\(\Delta BAD\)= \(\Delta EAD\))
=> \(\Delta ABC\)= \(\Delta AME\)(g. c. g) => AC = AM (hai cạnh tương ứng)
nên \(\Delta ACM\)cân tại A
và \(\widehat{A}=90^o\)
=> \(\Delta ACM\)vuông cân tại A (đpcm)
4/ Ta có: \(\widehat{AEM}+\widehat{AME}=90^o\)
=> \(\widehat{AEM}< 90^o\)(vì số đo của \(\widehat{AEM}\)và \(\widehat{AME}\)luôn luôn là số dương)
=> \(\widehat{MEC}>90^o\)(tự chứng minh)
=> \(\Delta MEC\)tù => MC là cạnh lớn nhất => ME < MC
áp dụng đ/lý pitago vào tam giác v ABC ta đ̣c BC^2=AB^2+AC^2=3^2+6^2 BC=3căn5 cm câu b xét tam g ABD và tam g AED ta cóAB=AE=3 cm góc BAD=góc EAD(gt) AD chung nên 2 tam g = nhau câu c góc ABC=góc AEM(VÌgócABD=AED mà AED+AME=90 độ) xét tam giác ABC và tg AMEcógócA chung AB=AE gócABC=AEM nên 2 tgiác =nhau suy raAM=AC suy ra tamg AMC v cân