bài 4:cho A=2/3.4/5.6/7....4998/4999
Hãy so sánh A và 0,02
bài 1:với 2 số nguyên a,b cùng dấu dương,so sánh a-1/a và b+1/b
bài 2:cho n là 1 số tự nhiên bất kì .cmr n+3 và 2n+5 là 2 số nguyên tố cùng nhau
bài 3:cho tổng S=1+3+5+...+2009+2011
CMR:n là 1 số chính phương
bài 4:cho A=2/3.4/5.6/7....4998/4999
Hãy so sánh A và 0,02
cho A=2/3.4/5...4998/4999
So sánh A với 0,02
2/3 > 0,02
4998/4999 > .... > 4/5 > 2/3 > 0,02
=> A = 2/3 . 4/5 ....4998/4999 .0,02
Vậy A > 2
So Sánh A=\(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\frac{4998}{4999}\)và 0,02
I.Tìm x, biết :
a) -(7/4) x (33/12 + 3333/2020 + 333333/303030 + 33333333/42424242)=22
b) 137x137x chia hết cho 13
II. So sánh :
a)A= 1/2.3/4.5/6. ... . 99/100 và B= 2/3.4/5.6/7. ... . 100/101
b) Cho : A=1/1.2+1/3.4+1/5.6+...+1/59.60
B=1/31+1/32+1/33+...+1/60
Hãy so sánh A và B ?
III. Cho các góc nhọn AOB và AOC có số đo theo thứ tự bằng 80o và 40o. Vẽ tia OE nằm giữa hai tia OA,OB sao cho BOE=60o. Tia OE là tia phân giác của góc nào ? Vì sao ?
IV.Tìm số nguyên n sao cho C= 2n+11 / n-1 cũng là số nguyên
V.Biết rằng số tự nhiên n chỉ có đúng 3 ước số. Hãy chững tỏ rằng số tự nhiên n đó là một số chính phương.
VI.Tìm các số tự nhiên x,y thỏa mãn x^2+x-89=5^y
Bài 1 :Chứng tỏ rằng :
\(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}\)\(-\frac{5}{3}+\frac{3}{2}-1\)
Bài 2 : Cho
\(A=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{4998}{4999}\)
Hãy so sánh A và 0,02
Câu hỏi của Lê Thị Minh Trang - Toán lớp 6 - Học toán với OnlineMath
Xem bài 1 nhé !
Bài 1:
Xét vế phải :
\(P=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}\)\(-1=2\)\(\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left(\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)
Đẳng thức được chứng tỏ là đúng
Bài 2 :
Đặt \(A'=\frac{3}{4}.\frac{4}{5}.\frac{7}{8}...\frac{4999}{5000}\)
Rõ ràng \(A< A'\)
SUY RA \(A^2< AA'=\frac{2}{50000}=\frac{1}{2500}=\left(\frac{1}{50}\right)^2\)
Nên \(A< \frac{1}{50}=0,02\)
Chúc bạn học tốt ( -_- )
Cho \(A=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{4998}{4999}\) Hãy so sánh A với 0,02
Đặt \(A'=\frac{3}{4}.\frac{5}{6}.\frac{7}{8}...\frac{4999}{5000}\)
Rõ ràng A' > A
Suy ra \(AA'>A^2=\frac{2}{50000}=\frac{1}{2500}=\left(\frac{1}{50}\right)^2\)
nên \(A< \frac{1}{50}=0,02\) đpcm
CMR:
A = 2/3 . 4/5 . 6/7 .... 4998/4999 < 0,02
Cho A=1/2 .3/4.5/6 nhân ... Nhân 99/100
B=2/3.4/5.6/7 nhân... Nhân 100/101
a)So sánh A và B
b) Tính A.B
cho A = 2/4 . 4/5 .6/7 ..... . 4998/4999
Hya xso sánh A và 0,02
Thời hạn đến chiều, huhu giúp tui vs
Đặt \(A'=\frac{3}{4}.\frac{5}{6}.\frac{7}{8}....\frac{4999}{5000}\)
Rõ ràng \(A< A'\)
\(\Rightarrow A^2< AA'A=\frac{2}{50000}=\frac{1}{2500}=\left(\frac{1}{50}\right)^2\)
Nên \(A< \frac{1}{50}=0,02\)