tìm x
\(X:\left(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+...+\frac{5}{601.607}\right)=0\)
Tính
a) A = \(\frac{2}{1.7}\)+\(\frac{2}{7.13}+\frac{2}{13.19}+...+\frac{2}{601.607}\)
giúp mik vs
rất đơn giản
nhân 3 vào tư và mẫu sau đó tách \(\frac{1}{3}\) ra
ta có \(\frac{1}{3}.\left(\frac{6}{1.7}+\frac{6}{7.13}+...+\frac{6}{601.607}\right)\)
=\(\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{601}-\frac{1}{607}\right)\)
=1/3 . ( 1-1/207)
bây giờ tự tính nha
\(2\left(\frac{1}{1.7}+\frac{1}{7.13}+...+\frac{1}{601.607}\right)\)
\(2.\frac{1}{6}\left(\frac{1}{1}-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{601}-\frac{1}{607}\right)\)
\(\frac{1}{3}\left(\frac{1}{1}-\frac{1}{607}\right)\)
\(\frac{1}{3}.\frac{606}{607}=\frac{202}{607}\)
1.Tính:a)\(\frac{2}{1.7}+\frac{2}{7.13}+\frac{2}{13.19}+....+\frac{2}{601.607}\)
b)\(S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
tính G= \(\frac{6^2}{1.7}+\frac{6^2}{7.13}+\frac{6^2}{13.19}+...+\frac{6^2}{n\left(n+6\right)}\)
G=6(6/1.7+6/7.13+6/13.19+..+6/n(n+6) )
=6(1-1/7+1/7-1/13+1/13-1/19+....+1/n-1/n+6)
=6(1-n/n+6)
=6.6/n+6
=36/n+6
vậy G=36/n+6
Tìm x biết
5/1.7+5/7.13+5/13.19+...+5/x.(x+6)=10075/12096
Đặt \(A=\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+....+\frac{5}{x.\left(x+6\right)}\)
\(\Rightarrow A=\frac{5}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+...+\frac{6}{x.\left(x+6\right)}\right)\)
\(\Rightarrow A=\frac{5}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+....+\frac{1}{x}-\frac{1}{x+6}\right)\)
\(\Rightarrow A=\frac{5}{6}.\left(1-\frac{1}{x+6}\right)\)
\(\Rightarrow\frac{5}{6}.\frac{x+5}{x+6}=\frac{10075}{12096}\)
Làm nốt nha
\(\frac{5}{1.7}+\frac{5}{7.13}+...+\frac{5}{x.\left(x+6\right)}=\frac{10075}{12096}\)
\(\Rightarrow\frac{5}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+...+\frac{6}{x.\left(x+6\right)}\right)=\frac{10075}{12096}\)
\(\Rightarrow\frac{5}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{x}-\frac{1}{x+6}\right)=\frac{10075}{12096}\)
\(\Rightarrow\frac{5}{6}.\left(1-\frac{1}{x+6}\right)=\frac{10075}{12096}\)
\(\Rightarrow1-\frac{1}{x+6}=\frac{10075}{12096}:\frac{5}{6}\)
\(\Rightarrow1-\frac{1}{x+6}=\frac{10075}{12096}.\frac{6}{5}\)
\(\Rightarrow1-\frac{1}{x+6}=\frac{2015}{2016}\)
\(\Rightarrow\frac{1}{x+6}=1-\frac{2015}{2016}\)
\(\Rightarrow\frac{1}{x+6}=\frac{1}{2016}\)
\(\Rightarrow x+6=2016\)
\(\Rightarrow x=2016-6\)
\(\Rightarrow x=2010\)
Chúc bạn học tốt !!!
1.7 5 + 7.13 5 + ... + x. x + 6 5 = 12096 10075 ⇒ 6 5 . 1.7 6 + 7.13 6 + ... + x. x + 6 6 = 12096 10075 ⇒ 6 5 . 1 − 7 1 + 7 1 − 13 1 + ... + x 1 − x + 6 1 = 12096 10075 ⇒ 6 5 . 1 − x + 6 1 = 12096 10075 ⇒1 − x + 6 1 = 12096 10075 : 6 5 ⇒1 − x + 6 1 = 12096 10075 . 5 6 ⇒1 − x + 6 1 = 2016 2015 ⇒ x + 6 1 = 1 − 2016 2015 ⇒ x + 6 1 = 2016 1 ⇒x + 6 = 2016 ⇒x = 2016 − 6 ⇒x = 2010\(1.7 5 + 7.13 5 + ... + x. x + 6 5 = 12096 10075 ⇒ 6 5 . 1.7 6 + 7.13 6 + ... + x. x + 6 6 = 12096 10075 ⇒ 6 5 . 1 − 7 1 + 7 1 − 13 1 + ... + x 1 − x + 6 1 = 12096 10075 ⇒ 6 5 . 1 − x + 6 1 = 12096 10075 ⇒1 − x + 6 1 = 12096 10075 : 6 5 ⇒1 − x + 6 1 = 12096 10075 . 5 6 ⇒1 − x + 6 1 = 2016 2015 ⇒ x + 6 1 = 1 − 2016 2015 ⇒ x + 6 1 = 2016 1 ⇒x + 6 = 2016 ⇒x = 2016 − 6 ⇒x = 2010\)
5/1.7+5/7.13+5/13.19+...+5/2017.2023
\(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+...+\frac{5}{2017.2023}\)
\(=5.\frac{1}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+...+\frac{6}{2017.2023}\right)\)
\(=\frac{5}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+...+\frac{1}{2017}-\frac{1}{2023}\right)\)
\(=\frac{5}{6}.\left(1-\frac{1}{2023}\right)\)
\(=\frac{5}{6}.\frac{2022}{2023}\)
\(=\frac{1685}{2023}\)
\(\frac{5}{1.7}+\frac{5}{7.13}+\frac{5}{13.19}+...+\frac{5}{2017.2023}\)
\(=\frac{5.6}{1.7.6}+\frac{5.6}{7.13.6}+\frac{5.6}{13.19.6}+.....+\frac{5.6}{2017.2023.6}\)
\(=\frac{5}{6}.\left(\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+...+\frac{6}{2017.2023}\right)\)
\(=\frac{5}{6}.\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+...+\frac{1}{2017}-\frac{1}{2023}\right)\)
\(=\frac{5}{6}.\left(1-\frac{1}{2023}\right)\)
\(=\frac{5}{6}.\frac{2022}{2023}\)
\(=\frac{1685}{2023}\)
Tìm x, biết:
a)\(\left(x+5\right).\left(x+9\right)>0\)
b)\(\left(\frac{1}{7}x-\frac{2}{7}\right).\left(-\frac{1}{5}x+\frac{3}{5}\right).\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
bạn ơi trả lời được câu này kông
( x + 1 ) + ( x - 3 ) + ( x + 5 ) + ............ + ( x +9) = 35
Tìm x
\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(-5\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=-x+\frac{1}{5}\)
giải nhanh hộ mình với, mai mình nộp rồi
\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x=-\frac{6}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
_Tần vũ_
\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)
\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(\Leftrightarrow3x=\frac{1}{6}\)
\(\Leftrightarrow x=\frac{1}{18}\)
_Tần Vũ_
a) \(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\Rightarrow\left(2x+\frac{3}{5}\right)^2=0+\frac{9}{25}\)
\(\Rightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\Rightarrow\left(2x+\frac{3}{5}\right)^2=\frac{3^2}{5^2}\)
\(\Rightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Rightarrow\hept{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x=\frac{3}{5}-\frac{3}{5}\\2x=-\frac{3}{5}-\frac{3}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x=0\\2x=\frac{-6}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0:2\\x=-\frac{6}{5}:2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
b) \(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Rightarrow3\left(3x-\frac{1}{2}\right)^3=0-\frac{1}{9}\)
\(\Rightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)
\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}:3\)
\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)
\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=\left(\frac{-1^3}{3^3}\right)\)
\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)
\(\Rightarrow3x-\frac{1}{2}=-\frac{1}{3}\)
\(\Rightarrow3x=-\frac{1}{3}+\frac{1}{2}\)
\(\Rightarrow3x=\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{6}:3\)
\(\Rightarrow x=\frac{1}{18}\)
Tìm x:
a)\(\left(3x-1\right)\left(-\frac{1}{2}x+5\right)=0\)
b)\(-5\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
a) x = \(\frac{1}{3}\)
b) x = \(\frac{1}{42}\)
Tìm x, biết :
a) \(\left(\frac{3}{4}.x-\frac{9}{16}\right).\left(\frac{1}{3}+\frac{-3}{5}:x\right)=0\)
b) \(\left(x-\frac{1}{3}\right).\left(x+\frac{2}{5}\right)>0\)
c) \(\left(x+\frac{3}{5}\right).\left(x+1\right)< 0\)
\(\left(\frac{3}{4}.x-\frac{9}{16}\right).\left(\frac{1}{3}+\frac{-3}{5}:x\right)=0\)
<=> \(\hept{\begin{cases}\frac{3}{4}.x-\frac{9}{16}=0\\\frac{1}{3}-\frac{3}{5}.\frac{1}{x}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{4}\\\frac{3}{5x}=\frac{1}{3}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{4}\\x=\frac{9}{5}\end{cases}}\)
\(\left(x-\frac{1}{3}\right)\left(\frac{2}{5}+x\right)>0\)
<=> \(\hept{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\)
<=> \(\hept{\begin{cases}x>\frac{1}{3}\\x>\frac{-2}{5}\end{cases}}\)hoặc \(\hept{\begin{cases}x< \frac{1}{3}\\x< \frac{-2}{5}\end{cases}}\)
<=>\(x>\frac{1}{3}\)hoặc \(x< \frac{-2}{5}\)
câu c tương tự nha
học tốt