Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thu Linh
Xem chi tiết
gorosuke
Xem chi tiết
PHẠM NGUYỄN MINH HIỂN
Xem chi tiết
Akai Haruma
15 tháng 5 2022 lúc 0:27

Lời giải:
Áp dụng BĐT Cô-si:
$\frac{1}{x+1}+\frac{x+1}{4}\geq 1$

$\frac{1}{y+1}+\frac{y+1}{4}\geq 1$

$\frac{1}{1+z}+\frac{1+z}{4}\geq 1$

Cộng theo vế:
$A+\frac{x+y+z+3}{4}\geq 3$

$\Rightarrow A\geq 3-\frac{x+y+z+3}{4}\geq 3-\frac{3+3}{4}=\frac{3}{2}$

Vậy $A_{\min}=\frac{3}{2}$ khi $x=y=z=1$

Lê Song Phương
15 tháng 5 2022 lúc 10:58

Dự đoán điểm rơi \(x=y=z=1\)

Khi đó \(\dfrac{1}{1+x}=\dfrac{1}{1+1}=\dfrac{1}{2}\) và \(1+x=1+1=2\)

Ta cần ghép Cô-si  \(\dfrac{1}{1+x}\) với \(k\left(1+x\right)\) sao cho đảm bảo đấu "=" xảy ra khi \(x=1\)

Đồng thời khi Cô-si 2 số dương trên thì dấu "=" xảy ra khi \(\dfrac{1}{1+x}=k\left(1+x\right)\Leftrightarrow\dfrac{1}{2}=k.2\Leftrightarrow k=\dfrac{1}{4}\)

Như vậy, áp dụng BĐT Cô-si cho 2 số dương \(\dfrac{1}{1+x}\) và \(\dfrac{1+x}{4}\), ta có \(\dfrac{1}{1+x}+\dfrac{1+x}{4}\ge2\sqrt{\dfrac{1}{1+x}.\dfrac{1+x}{4}}=1\)

Tương tự, ta có \(\dfrac{1}{1+y}+\dfrac{1+y}{4}\ge1\) và \(\dfrac{1}{1+z}+\dfrac{1+z}{4}\ge1\)

Cộng vế theo vế của các BĐT vừa tìm được, ta có \(A+\dfrac{x+y+z+3}{4}\ge3\)\(\Leftrightarrow A\ge3-\dfrac{x+y+z+3}{4}\)

Lại có \(x+y+z\le3\) nên \(A\ge3-\dfrac{x+y+z+3}{4}\Leftrightarrow A\ge3-\dfrac{3+3}{4}=\dfrac{3}{2}\)

Vậy GTNN của A là \(\dfrac{3}{2}\) khi \(x=y=z=1\)

Chuyengia247
Xem chi tiết
Minhmetmoi
2 tháng 2 2022 lúc 20:55

Ta có nhận xét sau:

     \(\dfrac{x+2}{x^3\left(y+z\right)}=\dfrac{1}{x^2\left(y+z\right)}+\dfrac{2}{x^3\left(y+z\right)}=\dfrac{yz}{zx+xy}+\dfrac{2\left(yz\right)^2}{zx+xy}\)

Tương tự với các phân thức còn lại

Ta đặt:

     \(\left\{{}\begin{matrix}a=xy\\b=yz\\c=zx\end{matrix}\right.\)

     \(\Rightarrow abc=1\) và \(a,b,c>0\)

Biểu thức P trở thành:

     \(P=\Sigma_{cyc}\dfrac{a}{b+c}+2\Sigma_{cyc}\dfrac{a^2}{b+c}\)

Dễ thấy:

     \(\Sigma_{cyc}\dfrac{a}{b+c}\ge\dfrac{3}{2}\) (Nesbit)

     \(\Sigma_{cyc}\dfrac{a^2}{b+c}\ge\dfrac{a+b+c}{2}\ge\dfrac{3\sqrt[3]{abc}}{2}=\dfrac{3}{2}\)

Do đó:

     \(P\ge\dfrac{3}{2}+2.\dfrac{3}{2}=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Linh Anh
Xem chi tiết
Baek Hyun
Xem chi tiết
Đào Thu Hoà
18 tháng 5 2019 lúc 18:59

áp dụng bất đẳng thức Cauchy ngược dấu cho 2 số không âm ta có

\(\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\Rightarrow\frac{x}{\sqrt{x-1}}\ge2.\)

\(\sqrt{\left(\frac{y}{\sqrt{2}}-\sqrt{2}\right).\sqrt{2}}\le\frac{\frac{y}{\sqrt{2}}-\sqrt{2}+\sqrt{2}}{2}=\frac{y}{2\sqrt{2}}\Rightarrow\frac{y}{\sqrt{y-2}}\ge2\sqrt{2}.\)

\(\sqrt{\left(\frac{z}{\sqrt{3}}-\sqrt{3}\right).\sqrt{3}}\le\frac{\frac{z}{\sqrt{3}}-\sqrt{3}+\sqrt{3}}{2}=\frac{z}{2\sqrt{3}}\Rightarrow\frac{z}{\sqrt{z-3}}\ge2\sqrt{3}\)

\(\Rightarrow A\ge2+2\sqrt{2}+2\sqrt{3}\)

Vậy Min \(A=2+2\sqrt{2}+2\sqrt{3}\)

\(\Leftrightarrow\hept{\begin{cases}x-1=1\\\frac{y}{\sqrt{2}}-\sqrt{2}=\sqrt{2}\\\frac{z}{\sqrt{3}}-\sqrt{3}=\sqrt{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}\left(tmđk\right)}\)

thành piccolo
Xem chi tiết
Nguyễn Việt Nga
Xem chi tiết
Thắng Nguyễn
6 tháng 11 2016 lúc 20:04

a)

b)Từ \(xyz=1\Rightarrow x=\frac{1}{zy};y=\frac{1}{xz};z=\frac{1}{xy}\)

\(M=\frac{z^2y^2}{x\left(z+y\right)}+\frac{x^2z^2}{y\left(x+z\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)

\(\ge\frac{\left(xy+yz+xz\right)^2}{2\left(xy+yz+xz\right)}=\frac{xy+yz+xz}{2}\)(Bđt Cauchy-Schwarz)

\(\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)(Bđt Cosi)

Dấu = khi \(x=y=z=1\)

GV
8 tháng 11 2016 lúc 9:05

a) Gọi 5 số là: \(a_0,a_1,a_2,a_3,a_4\)

Lấy \(T_0=a_0\)

      \(T_1=a_0+a_1\)

     \(T_2=a_0+a_1+a_2\)

    \(T_3=a_0+a_1+a_2+a_3\)

    \(T_4=a_0+a_1+a_2+a_3+a_4\)

Trong 5 số: \(T_0,T_1,T_2,T_3,T_4\) có 2 trường hợp sau xảy ra:

TH1: Tồn tại 1 số \(T_i\) chia hết cho 5 => Điều phải chứng minh

TH2: Không có số nào chia hết cho 5 => Trong 5 số đó có 2 số khi chia cho 5 có cùng một số dư (theo nguyên lí Direchlet, vì 5 số đều không chia hết cho 5 nên khi chia cho 5 sẽ cho 4 số dư là {1, 2, 3,4}). Giả sử \(T_i\) và \(T_j\)(với i < j) chia cho 5 có cùng số dư => Hiệu \(T_j-T_i\) chia hết cho 5. Mà hiệu \(T_j-T_i=a_{i+1}+a_{i+2}+...+a_j\) chia hết cho 5 => Điều phải chứng minh.

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 1 2021 lúc 20:47

\(P\ge\dfrac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}+\dfrac{\sqrt{3\sqrt[3]{y^3z^3}}}{yz}+\dfrac{\sqrt{3\sqrt[3]{z^3x^3}}}{zx}\)

\(P\ge\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\ge\sqrt{3}.3\sqrt[3]{\dfrac{1}{\sqrt{xy.yz.zx}}}=3\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

tthnew
16 tháng 1 2021 lúc 20:50

Ta có bất đẳng thức sau \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\ge0.\)

Do đó:

\(P=\sum\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\sum\dfrac{\sqrt{xyz+xy\left(x+y\right)}}{xy}\)

\(=\sqrt{x+y+z}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\ge\sqrt{3\sqrt[3]{xyz}}\cdot3\sqrt[3]{\dfrac{1}{\sqrt{xy}}\cdot\dfrac{1}{\sqrt{yz}}\cdot\dfrac{1}{\sqrt{zx}}}=3\sqrt{3}\)

Đẳng thức xảy ra khi $x=y=z=1.$

Hồng Phúc
16 tháng 1 2021 lúc 20:51

Áp dụng BĐT AM-GM:

\(P=\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^3+x^3}}{zx}\)

\(\ge\dfrac{\sqrt{3xy}}{xy}+\dfrac{\sqrt{3yz}}{yz}+\dfrac{\sqrt{3zx}}{zx}\)

\(=\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\)

\(\ge\sqrt{3}.3\sqrt[3]{\dfrac{1}{xyz}}=3\sqrt{3}\)

\(minP=3\sqrt{3}\Leftrightarrow x=y=z\)