Cho S=1/5+2/5^2+3/5^3+...+2012/5^2012 Hãy so sánh S với 1/3
Cho S=1/5+2/5 mu 2+3/5 mu 3+...+2012/5 mu 2012
So sánh S với 1/3
Cho S =1/5+2/5 mu 2 +3/5mu 3 +4/5 mu 4+....+2012/5 mu 2012
So sánh S với 1/3
Cho S =1/5+2/52+3/53+4/54+.......+2012/52012
So sánh S với 1/3
Cho S=1/5+2/5^2+3/5^3+...+2012/5^2012 Hãy so sánh S với 1/3
Lời giải:
\(S=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{2012}{5^{2012}}\)
\(\Rightarrow 5S=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2012}{5^{2011}}\)
Trừ theo vế:
\(4S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2011}}-\frac{2012}{5^{2012}}\)
\(20S=5+1+\frac{1}{5}+...+\frac{1}{5^{2010}}-\frac{2012}{5^{2011}}\)
Trừ theo vế:
\(16S=5-\frac{2012}{5^{2011}}-\frac{1}{5^{2011}}+\frac{2012}{5^{2012}}\)
\(16S=5-\frac{2013}{5^{2011}}+\frac{2012}{5^{2012}}< 5-\frac{2013}{5^{2011}}+\frac{2013}{5^{2011}}=5\)
\(S< \frac{5}{16}< \frac{1}{3}\)
So sánh S =\(\frac{2}{1×2×3}+\frac{2}{2×3×4}+\frac{2}{3×4×5}+...+\frac{2}{2010×2011×2012}\) với P=\(\frac{1}{2}\)
S=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2010.2011.2012}\)
=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2010.2011}-\frac{1}{2011.2012}\)
=\(\frac{1}{2}-\frac{1}{2011.2012}< \frac{1}{2}\)(Vì \(\frac{1}{2011.2012}>0\))
=> S <\(\frac{1}{2}\)
\(S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+....+\frac{2}{2010.2011.2012}\)
\(S=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2012-2010}{2010.2011.2012}\)
\(S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2010.2011}-\frac{1}{2011.2012}\)
\(S=\frac{1}{1.2}-\frac{1}{2011.2012}=\frac{2023065}{4046132}\)
\(\text{Vì}\)\(\frac{2023065}{4046132}< \frac{1}{2}\Rightarrow S< P\)
Cho S=1/5+2/5^2+3/5^3+4/5^4+....+2015/5^2015 . Hãy so sánh S với 1/3
1853567804232223
Cho S = 5+5^2+5^3+...+5^2012
chứng minh rằng S chia hết cho 65
mình làm thế này có đúng ko , mong mọi người nhận xét :
tổng S đều có số hạng 5 nên S chia hết cho 5 (1)
S= 5 + 5^2 + 5^3 + .. + 5^2012
= (5 + 5^3) + (5^2 + 5^4) + (5^5 + 5^7) + ... + ( 5^2010 + 5^2012 )
= 5 ( 1 + 5^2 ) + 5^2 (1+5^2) +....+ 5^2010 (1+5^2)
= 26(5+5^2+...+5^2010)
=> S chia hết cho 26
vì 26 = 2.13 mà (2;13)=1
=> S chia hết cho 13 (2)
từ (1) và (2)
=> S chia hết cho 5
S chia hết cho 13
mà 13.5 = 65 và (13;5)=1
=> S chia hết cho 65
Ai nhận xét sẽ có tick
Cách này cũng đúng nhưng có cách khác nhanh hơn
S = ( 5 + 5^2 + 5^3 + 5^4 ) + .....
Gộp 4 số liên tiếp lại rồi C/M
Chúc học tốt
1)tìm số tự nhiên biết rằng số đó chia 9 dư 5, chia 7 dư 4 và chia 5 dư 3
2)cho A = 1+2012+2012^2+...+2012^72
B = 2012^73-1
so sánh A và B
Cho S = \(5+5^2+5^3+...+5^{2012}\)
chứng minh rằng S chia hết cho 65
mình làm thế này có đúng ko , mong mọi người nhận xét :
tổng S đều có số hạng 5 nên S chia hết cho 5 (1)
S= 5 + 5^2 + 5^3 + .. + 5^2012
= (5 + 5^3) + (5^2 + 5^4) + (5^5 + 5^7) + ... + ( 5^2010 + 5^2012 )
= 5 ( 1 + 5^2 ) + 5^2 (1+5^2) +....+ 5^2010 (1+5^2)
= 26(5+5^2+...+5^2010)
=> S chia hết cho 26
vì 26 = 2.13 mà (2;13)=1
=> S chia hết cho 13 (2)
từ (1) và (2)
=> S chia hết cho 5
S chia hết cho 13
mà 13.5 = 65 và (13;5)=1
=> S chia hết cho 65
Ai nhận xét sẽ có tick
từ (1) và (2)
=> S ⋮5
mình nghĩ hơi thừa chỉ cần từ (1) là đủ rồi
nên đánh (2) vào"=>S⋮5"
Để khi chứng tỏ thì nói "từ (1) và (2) => S ⋮ 65"
1) Ở (1) vô lý nha bạn, tổng S đều có số hạng 5 là sao? số hạng có tận cùng là 5 chứ.
Ok, mik nhận xét thế thôi nhé. Cách trình bày của bạn khá chặt chẽ. Mà bạn viết vào vở thì sử dụng kí hiệu toán học ý, trong toán đừng viết chữ nhiều quá. ( VD: chia hết cho)