(1/2+2015/2016+2016/2017+1)(2015/2016+2016/2017+7/22)
(1/2+2015/2016+2016/2017+1)(2015/2016+2016/2017+7/22)-(1/2+2015/2016+2016/2017)(2015/2016+2016/2017+7/22+1)
Tính
(1/2 + 2015/2016 + 2016/2017 + 1)(2015/2016 + 2016/2017 + 7/22) - (1/2 + 2015/2016 + 2016/2017)(2015/2016 + 2016/2017 + 7/22 + 1)
Giúp mk với
(1/2+2015/2016+2016/2017+1)(2015/2016+2016/2017+7/22)-(1/2+2015/2016+2016/2017)(2015/2016+2016/2017+7/22+1)
(1/2+2015/2016+216/2017+1)(2015/2016+2016/2017+7/22)-(1/2+2015+2016)(2015/2016+2016/2017+7/22+1)
(1+2015/2016+2016/2017+1/2).(2015/2016+2016/2017+7/22)-(2015/2016+2016/2017+1/2).(2015/2016+2016/2017+7/22+1)
tính tổng trên
( trình bày cách tính
\(\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}+1\right)\left(\frac{2105}{2016}+\frac{2016}{2017}+\frac{7}{22}\right)-\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}\right)\left(\frac{2015}{2016}+\frac{2016}{2017}+\frac{7}{22}+1\right)\)
(1/2+2015/2016+1 )nhaân (2016/2017+7/2) - (1/2+2015/2016) nhaân (7/2+2016/2017 +1)
TÍNH PHEP TÍNH NAY
So sánh:
a) A = 102016 - 2 / 102017 - 2 và B = 202015 + 1 / 102016 + 1
b) A = 20162017 - 3 / 20162018 - 3 và B = 20162016 + 3 / 20162017 + 3
c) A = 20172016 - 2015 / 20172017 - 2015 và B = 20172015 + 1 / 20172016 + 1
so sánh hai phân số sau: 2015*2016-1/2015*2016 và 2016*2017-1/2016*2017
TA có :\(\frac{2015.2016-1}{2015.2016}=\frac{2015.2016}{2015.2016}-\frac{1}{2015.2016}=1-\frac{1}{2015.2016}\)
Ta có:\(\frac{2016.2017-1}{2016.2017}=\frac{2016.2017}{2016.2017}-\frac{1}{2016.2017}=1-\frac{1}{2016.2017}\)
Vì \(2015.2016< 2016.2017\)
\(\Rightarrow\frac{1}{2015.2016}>\frac{1}{2016.2017}\)
\(\Rightarrow1-\frac{1}{2015.2016}< 1-\frac{1}{2016.2017}\)
\(\Rightarrow\frac{2015.2016-1}{2015.2016}< \frac{2016.2017-1}{2016.2017}\)
Vậy \(\frac{2015.2016-1}{2015.2016}< \frac{2016.2017-1}{2016.2017}\)