cho 1/a+1/b+1/c=1/a+b+c tinh P= (a+b)(b^3+c^3)(c^5+a^5)
cho 1/a+1/b+1/c=1/a+b+c tinh P= (a+b)(b^3+c^3)(c^5+a^5)
jup với
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\left(ab+ac+bc\right)\left(a+b+c\right)=abc\)
\(\Rightarrow a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc=âbc\)
\(\Rightarrow\left(a^2b+ab^2\right)+\left(ac^2+bc^2\right)+\left(a^2c+2abc+b^2c\right)=0\)
\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2=0\)
\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+\left(ac+bc\right)\left(a+b\right)=0\)
\(\Rightarrow\left(a+b\right)\left(ab+c^2+ac+bc\right)=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a=-b\\\frac{b=-c}{a=-c}\end{cases}}\)
Từ đó: P = 0.
Mình giải hơi tắt. Mong bạn hiểu bài.
Chúc bạn học tốt.
cho a,b,c thuoc Q thoa man a+b-c/c=a+c-b/b=c+b-a/a. tinh P=(1+a/b).(1+b/c).(1+c/b)
3 khoi A,B,C cho duoc 912m3 dat. So hoc sinh khoiA,B ti le voi 1 va 2. So hc sinh khoi B va C ti le 4 va 5. Trung binh moi hoc sinh khoi A,B,C cho duoc ti le 1,2; 1,4;1,6 m3 dat. Tinh so hoc sinh moi khoi
Tham khảo ở đây : /hoi-dap/question/77428.html
Bài5: cho a,b,c>0.CMR
1, 2/a+1/b >= 4/a+b
2, 1/a+1/b+1/c>= a/a+b+c
Bài 6: cho a,b>=0 cmr
1, a^3+b^4>=ab(a+b)
2, a^4+b^4>=ab(a^2+b^2)
3, a5+b5>=ab(a^3+b^3)
Bài 7 cho a,b,c>0 cmr
1/a^3+b^3+abc +1/b^3+c^3+abc+1/c^3+a^3+2 <1/abc
Bài 8cho a,b,c>0;abc=1
1, 1/a^3+b^3+2 +1/b^3+c^3+2 +1/c^3+a^3+2 =< 1
2,ab/a^5+b^5+ab +bc/b^5+c^5+bc + ca/c^5+a^5+ca =<1
cần giúp
1.Cho a,b,c>0. CMR:\(\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge a^3+b^3+c^3\)
2.Cho a,b,c>0. CMR: \(\frac{a^3}{a+2b}+\frac{b^3}{b+2c}+\frac{c^3}{c+2a}\ge\frac{1}{3}\left(a^2+b^2+c^2\right)\)
3.Cho a,b,c thỏa mãn a+b+c=3. CMR: \(\frac{a}{b^2c+1}+\frac{b}{c^2a+1}+\frac{c}{a^2b+1}\ge2\)
a/ BĐT sai, cho \(a=b=c=2\) là thấy
b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương
\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)
\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
bai 1 tinh
a,2/3-1,8:-0.75+1/2
b, 3^3.(1/3)^4
c,(1+1/2):(2/3-3/4)^2
bai 2
a, cho a/3=b/2=c/6 va a-b+c =-10,2 . TINH a,b,c
b, cho a/b=c/d CMR: A+B/A-B=C+D/C-D
giup mk nha mn
cho a+b+c=1;a^2+b^2+c^2=1;a^3+b^3+c^3=1 tinh a^1989+b^1999+c^2000
tc \(0\le a;b;c\le1\)
\(a^3+b^3+c^3+a+b+c=2a^2+2b^2+2c^2=2\)
\(a^3-2a^2+a+b^3-2b^2+b+c^3-2c^2+c=0\)
\(a\left(a-1\right)^2+b\left(b-1\right)^2+c\left(c-1\right)^2=0\)
\(\hept{\begin{cases}a\left(a-1\right)^2=0\\b\left(b-1\right)^2=0\\c\left(c-1\right)^2=0\end{cases}}\)
đến đây lập luận ok
Cho a+b+c=2010 va 1/(a+b)+1/(b+c)+1/(c+a)=1/3
Tinh S=a/(b+c)+b/(c+a)+c/a+b
\(S+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(=2010.\frac{1}{3}=670\)
\(\Rightarrow S=670-3=667\)
cho cac so a,b,c va thoa man \(\frac{ab}{a+b}=\frac{1}{3},\frac{bc}{b+c}=\frac{1}{4},\frac{ca}{c+a}=\frac{1}{5}\)Tinh gia tri bieu thuc P=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Thêm đk \(a,b,c\ne0\)
Ta có: \(\frac{ab}{a+b}=\frac{1}{3}\Rightarrow\frac{a+b}{ab}=3\)
\(\frac{bc}{b+c}=\frac{1}{4}\Rightarrow\frac{bc}{b+c}=4\)
\(\frac{ca}{c+a}=\frac{1}{5}\Rightarrow\frac{c+a}{ca}=5\)
\(\Rightarrow\frac{a+b}{ab}+\frac{b+c}{bc}+\frac{c+a}{ca}=12\)
\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}=12\)
\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=12\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)
Cho tan giac ABC:
a) Biet A:B:C=4:7:7. Tinh goc A, goc B, goc C.
b) Biet goc A=3/5 goc B, B=1/2 goc C. Tinh goc A, goc B, goc C.
a) A:B:C= 4:7:7
=> A/4 = B/7 = C/7
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{A}{4}=\frac{B}{7}=\frac{C}{7}=\frac{A+B+C}{4+7+7}=\frac{180o}{18}=10o\)
\(\Rightarrow\frac{A}{4}=10o\Rightarrow A=40o\)
\(\Rightarrow\frac{B}{7}=10o\Rightarrow B=70o\)
\(\Rightarrow\frac{C}{7}=10o\Rightarrow C=70o\)
b) B = 1/2*C => C = 2B
Ta có: A + B + C = 180o
3/5*B + B + 2B = 180o
(3/5 +1 +2)B =180o
18/5 * B = 180o
B = 180o : 18/5
B= 50o
=> A= 3/5 * B = 3/5 * 50o = 30o
=> C^ = 2B = 2* 50o = 100o
Vậy A =
B=
C=