ai làm bài này hộ tui nha:
cho 2 số a và b thỏa mãn : a-b=2(a+b)=a/b
cm:a=-3b;tính a/b;tìm a và b
;
Tìm các stn a,b thỏa mãn (100a+3b+1)(2^a+10a+b)=225
Làm hộ mk vs mk đang cần gấp
Ai rảnh hộ mấy bài này vs :<< chả bt khó hay dễ mà tui lười nghĩ lắm
1) Tìm a,b,c nguyên dươn thỏa mãn 2aa+bb=3cc
2) Giải pt 32x3-48x2+36x+(4y-7).căn(1-y)=7 với y=3-3x
3) Tìm p,q nguyên tố thỏa mãn pq.qp=(2p+q+1)(2q+p+1)
Đánh như này hơi khó nhìn mà mấy hôm nay tui ko chèn đc j vào bài @@ ai bt tại sao ko
Đống này xong r, ko k bất cứ ai trl nx nhé
Không ai rảnh bạn nha!!!!
có thế mà ko biết
1919283747suudducjcyusjisgctegxfswsysbckmxchashcnncsaocndfanadvn d 0vhdavhn ejedflaj m najvdokjcsic
Ai chưa ngủ hộ tui mấy bài này nhé, 1 thui cx đc :>>
1) Cho a,b thỏa mãn a+b>=2 . CM pt (x^2 + 2a^2b+b^5)(x^2+2ab^2+a^5)=0 luôn có nghiệm
2)Tìm m để pt 2x^2-4mx+2m^2-1=0 (với ẩn x,tham số m) có 2 nghiệm phân biệt x1,x2 thỏa mãn 2x1^2 + 4mx2+ 2m^2<2017
3) Cho a,b khác 0 thỏa mãn 1/a+1/b=1/2 chứng minh pt (x^2+ax+b)(x^2+bx+a)=0 luôn có nghiệm
Đề bài 1 có nhầm chỗ nào không bạn ???
Bài 3 :
( x2 + ax + b )( x2 + bx + a ) = 0 \(\Leftrightarrow\orbr{\begin{cases}x^2+ax+b=0\left(^∗\right)\\x^2+bx+a=0\left(^∗^∗\right)\end{cases}}\)
\(\left(^∗\right)\rightarrow\Delta=a^2-4b,\)Để phương trình có nghiệm thì \(a^2-4b\ge0\Leftrightarrow a^2\ge4b\Leftrightarrow\frac{1}{a}\ge\frac{1}{2\sqrt{b}}\left(3\right)\)
\(\left(^∗^∗\right)\rightarrow\Delta=b^2-4a\), Để phương trình có nghiệm thì \(b^2-4a\ge0\Leftrightarrow\frac{1}{b}\ge\frac{1}{2\sqrt{a}}\left(4\right)\)
Cộng ( 3 ) với ( 4 ) ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}\)
<=> \(\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}< \frac{1}{2}\Leftrightarrow\frac{1}{4a}+\frac{1}{4b}< \frac{1}{4}\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)< \frac{1}{4}\Leftrightarrow\frac{1}{8}< \frac{1}{4}\)( luôn luôn đúng với mọi a ,b )
B3 tui lm đc r, bn lm nhìn rối thế @@ Đề bài ko sai đâu hết nhé bn
Vâng cj ,mai em làm 2 bài còn lại được ko ạ ???
đố ai làm được bài này . làm dc mk tick cho
cho a,b là các số thực thỏa mãn : a2+b2-4a+3=0
tìm GTLN, GTNN của biểu thức M=a2+b2
cho các số nguyên a ; b ( a>b) thỏa mãn :
( a - b ) . ( 2a +2b +1 ) = b^2
chứng minh a - b là số chính phương
ai làm được tui tick
Cho 2 số a và b thỏa mãn :
a−b=2(a+b)=a/b
Chứng minh a = -3b ; Tính ab ; Tìm a và b.
Làm như chắc là sai:vvv
Điều kiện: b\(\ne0\)
Theo đề bài ta có: a-b=2(a+b)
<=>a-b=2a+2b
<=>a-2a=2b+b
<=> -a=3b
<=>a=-3b
=> ab=(-3b).b=-3b2
Ta có: \(\dfrac{a}{b}=\left(a-b\right)\Leftrightarrow a=\left(a-b\right)b=ab-b^2=-3b^2-b^2=-4b^2\)
<=> -3b=-4b2
<=> \(-3b+4b^2=0\Leftrightarrow b\left(4b-3\right)=0\)
=> \(\Leftrightarrow\left[{}\begin{matrix}b=0\left(loai\right)\\4b-3=0\end{matrix}\right.\)
=> \(b=\dfrac{3}{4}\Rightarrow a=-3.\dfrac{3}{4}=-\dfrac{9}{4}\)
Vậy...
cho a,b,c là 3 số nguyên dương thỏa mãn a+3b=8 ; 2a+c=7 tính a+b+c
LÀm hộ toy nha :D đúng toy tick cho nha
Đề sai
Ta có : \(\hept{\begin{cases}a+3b=8\\2a+3c=7\end{cases}}\Rightarrow\left(a+3b\right)+\left(2a+3c\right)=8+7\)
\(\Leftrightarrow a+3b+2a+3c=15\)
\(\Leftrightarrow\left(2a+a\right)+3b+3c=15\)
\(\Leftrightarrow3a+3b+3c=15\)
\(\Leftrightarrow3\left(a+b+c\right)=15\)
\(\Leftrightarrow a+b+c=15\div3\)
\(\Leftrightarrow a+b+c=5\)
Cho \(a\) và \(b\) là các số tự nhiên thỏa mãn \(2a^2+2=3b^2+b\). Chứng minh rằng: \(a-b\) và \(3a+3b+1\) là các số chính phương.
Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.
a, Cho các số nguyên a, b, c, d thỏa mãn a^2+b^2=c^2+d^2 và a+b=c+d. Chứng minh rằng: a^2014+b^2014=c^2014+d^2014.
b, Tìm n thuộc Z để 4n-3 chia hết cho 3n-2
Làm nhanh giúp tui nha! Ai nhanh nhất tick liền!
\(b)\)
\(4n-3⋮3n-2\)
\(\Leftrightarrow3\left(4n-3\right)⋮3n-2\)
\(\Leftrightarrow12n-9⋮3n-2\)
\(\Leftrightarrow\left(12n-8\right)-1⋮3n-2\)
\(\Leftrightarrow4\left(3n-2\right)-1⋮3n-2\)
\(\Leftrightarrow1⋮3n-2\)
\(\Leftrightarrow3n-2\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow3n\in\left\{1;3\right\}\)
Mà: \(3n⋮3\)
\(\Leftrightarrow3n=3\)
\(\Leftrightarrow n=1\)