CMR:với mọi số nguyên n các biểu thức sau là bình phương của 1 số nguyên.
A=(n+1)(n+2)(n+3)(n+4)+1
cho n là số nguyên . Cmr biểu thức sau là bình phương của 1 số nguyên
n^4 -2n^3+3n^2-2x+1
1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6
2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8
3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9
4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n
6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n
7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n
8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49
9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương
10/CMR với mọi số tự nhiên n>1:
a/ số n^4 +4 là hợp số
b/ số n^4+4k^4 là hợp số (k là số tự nhiên)
11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5
12/ Số 2^32+1 có là số nguyên tố không?
13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)
14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n
15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia
sao dài dòng quá vậy, như thế thì ai mà làm nổi, bạn phải hỏi từng bài 1 chứ
Nhìn là muốn chạy rùi
^-^
p thử lên mạng mà tra từng câu 1 mik nghĩ là có
1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6
2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8
3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9
4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n
6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n
7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n
8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49
9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương
10/CMR với mọi số tự nhiên n>1:
a/ số n^4 +4 là hợp số
b/ số n^4+4k^4 là hợp số (k là số tự nhiên)
11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5
12/ Số 2^32+1 có là số nguyên tố không?
13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)
14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n
15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia
Làm 1;2;3;4 bài 1 lần thôi chứ sao 15 bài 1 lúc ?
Nghĩ ai rảnh mà giải ah ?
cmr:với mọi số tự nhiên n các số sau là các số nguyên tố cùng nhau:
a) 2n+1 và 3n+1
b)7n+10 và 5n+7
c)2n+3 và 4n+8
d)n(n+1):2 và 2n+1
Mình VD cho bạn 2 bài thôi nha, các câu khác tương tự:
b)Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
⇒ d ∈ Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
⇒ d ∈ Ư(2) ⇒ d ∈ {1,2}
d = 2 không là ước số của số lẻ 2n+3 ⇒ d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.
c)Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
⇒ d ∈ Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
⇒ d ∈ Ư(2) ⇒ d ∈ {1,2}
d = 2 không là ước số của số lẻ 2n+3 ⇒ d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.
Cho M = (n+1)(n+2)(n+3)(n+4) +1
CM với mọi n nguyên thì M là bình phương 1 số nguyên
\(M=\left(n+1\right)\left(n+4\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+5n+4\right)\left(n^2+5n+6\right)+1\) ( 1 )
Đặt \(t=n^2+5n+4\)
\(\Rightarrow\left(1\right)=t\left(t+2\right)+1\)
\(=t^2+2t+1\)
\(=\left(t+1\right)^2\)
Vậy M là bình phương của 1 số nguyên
\(M=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)
\(=\left[\left(n+1\right)\left(n+4\right)\right]\left[\left(n+2\right)\left(n+3\right)\right]+1\)
\(=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)
Đặt \(a^2+5a+4=x\)
ta có:\(M=x\left(x+2\right)+1\)
\(=x^2+2x+1=\left(x+1\right)^2\)
Thay \(x=a^2+5a+4\)Ta được:
\(M=\left(a^2+5a+5\right)^2\)
Vì \(a\in Z\)nên \(a^2+5a+5\in Z\)
Do đó\(M=\left(a^2+5a+5\right)^2\)là bình phương của 1 số nguyên
M = ( n + 1 )( n + 2 )( n + 3 )( n + 4 ) + 1
M = [ ( n + 1 )( n + 4 ) ][ ( n + 2 )( n + 3 ) ] + 1
M = [ n2 + 5n + 4 ][ n2 + 5n + 6 ] + 1
Đặt t = n2 + 5n + 4
M = t( t + 2 ) + 1
= t2 + 2t + 1
= ( t + 1 )2
= ( n2 + 5n + 5 )2
=> ĐPCM
CMR:Với mọi số nguyên n thì:n/3+n^2/3+n^3/6 cũng là số nguyên
chứng minh rằng với mọi số tự nhiên A thì giá trị của biểu thức sau là 1 số nguyên
A= n^4/24+n^3/4+11n^2/24+3/4
chứng minh rằng với mọi số tự nhiên A thì giá trị của biểu thức sau là 1 số nguyên
A= n^4/24+n^3/4+11n^2/24+3/4
C/m rằng với mọi số nguyên n thì n^2+n+1 không chia hết cho 49 Tìm số nguyên x để biểu thức x^4-x^2+2x+2 là số chính phươngTìm số nguyên dương n để A=n^2006+n^2005+1Tìm số nguyên n để A=n^3-n^2-n-2 là số nguyên tốChứng minh rằng với mọi số nguyên m;n thì m.n.(m^2-n^2) chia hết cho 6Tìm n để B=n^2+2n+200 là số chính phương
Mn làm giúp mình nha thứ 7 mình cần rồi :D Cảm ơn trước