tìm x biết: x-1/2013 + x-2/2012 - x-3/2011= x-4/2010
Tìm x biết (x+4) /2010 + (x+3) / 2011 = (x+2) /2012 + (x+1) /2013
(x + 4)/2010 + (x+3)/2011 = (x+2)/2012 + (x+1)/2013
<=> [(x + 4)/2010 + 1] + [(x+3)/2011 + 1] = [(x+2)/2012 + 1] + [(x+1)/2013 + 1]
<=> (x + 2014)/2010 + (x + 2014)/2011 = (x + 2014)/2012 + (x + 2014)/2013
<=> (x + 2014)/2010 + (x + 2014)/2011 - (x + 2014)/2012 - (x + 2014)/2013 = 0
<=> (x + 2014).(1/2010 + 1/2011 - 1/2012 - 1/2013) = 0
Ta thấy (1/2010 + 1/2011 - 1/2012 - 1/2013) ≠ 0
Vậy suy ra x = -2014
Tìm x biết (1/2+1/3+...+1/2012+1/2013).x = 2012/1+2011/2+2010/3+...+2/2011+1/2012
Tìm x biết: (x+1/2013) + (x+2/2012) + (x+3/2011) = (x+4/2010) + (x+5/2009) + (x+6/2008)
`Answer:`
\(\left(\frac{x+1}{2013}\right)+\left(\frac{x+2}{2012}\right)+\left(\frac{x+3}{2011}\right)=\left(\frac{x+4}{2010}\right)+\left(\frac{x+5}{2009}\right)+\left(\frac{x+6}{2008}\right)\)
\(\Leftrightarrow\frac{x+1}{2013}+1+\frac{x+2}{2012}+1+\frac{x+3}{2011}+1=\frac{x+4}{2010}+1+\frac{x+5}{2009}+1+\frac{x+6}{2008}+1\)
\(\Leftrightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}+\frac{x+2014}{2011}=\frac{x+2014}{2010}+\frac{x+2014}{2009}+\frac{x+2014}{2008}\)
\(\Leftrightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}+\frac{x+2014}{2011}-\frac{x+2014}{2010}-\frac{x+2014}{2009}-\frac{x+2014}{2008}=0\)
\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
\(\Rightarrow x+2014=0\)
\(\Leftrightarrow x=-2014\)
tìm X biết : ( 1 / 2 + 1/3 + ........+ 1 /2012 + 1/2013 ) . x = 2012/1 + 2011/2 + 2010 /3 + .....+2/2011+1/2012
x-1/2013+x-2/2012=x-3/2011+x-4/2010
Tìm x
Tìm x: \(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)
\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)
\(\Rightarrow\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\)
\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)
\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)
`=> (x+2014) (1/2010 + 1/2011-1/2012-1/2013)=0`
`=> x+2014=0` ( vì `1/2010 + 1/2011-1/2012-1/2013≠0 )`
`=>x=-2014`
tìm x biết:
(1/2+1/3+...+1/2012+1/2013).x = 2012/1+2111/2+2010/3+...+2/2011+1/2012
Tìm số hữu tỉ x biết:
a) \(\frac{x+4}{2009}+\frac{x+3}{2010}=\frac{x+2}{2011}+\frac{x+1}{2012}\)
b) \(\frac{x-2011}{2010}+\frac{x-2011}{2011}+\frac{x-2011}{2012}=\frac{x-2011}{2013}+\frac{x-2011}{2014}\)
a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)
\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)
\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\) (1)
Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)
Nên biểu thức (1) xảy ra khi \(x+2013=0\)
\(x=-2013\)
b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\) (2)
Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)
Nên biểu thức (2) xảy ra khi \(x-2011=0\)
\(x=2011\)
tìm x (1/2+1/3+...+1/2013) *x= 2012 +2011/2+2010/3+...+2/2011+1/2012