Tim cac so nguyen x,y,z biet
x(x+y+z)=-5
y(x+y+z)=9
z(x+y+z)=5
tim cac so x y z nguyen duong thoa man x3+3x2+5=5y va x+3=5z
Tim cac so nguyen x, y, z thoa man x/y +y/z+z/x =y/x+/y+x/z=x+y+z=3
tim cac so nguyen x ,y,z thoa man /x-y/+/y-z/+/z-x/=2015
tim cac so nguyen x,y,z biet y^2=y-1; x^2=x-1; z^2=z-1
tim x,y,z biet y^2=y-1; x^2=x-1; z^2=z-1
NhOk ChỈ Là 1 FaN CuỒnG CủA KhẢi tra loi vay thi chet ho cai.
Cho x,y,z la cac so nguyen duong thoa man 1/x + 1/y + 1/z = 2015.
Tim GTLN cua bieu thuc P=x+y/x^2+y^2 + y+z/y^2+z^2 + z+x/z^2+x^2
Áp dụng bất đẳng thức cho ba số \(x,y,z\in Z^+\), ta được
\(x^2+y^2\ge2xy\) \(\Rightarrow\) \(\frac{x+y}{x^2+y^2}\le\frac{x+y}{2xy}\) \(\left(1\right)\)
\(y^2+z^2\ge2yz\) \(\Rightarrow\) \(\frac{y+z}{y^2+z^2}\le\frac{y+z}{2yz}\) \(\left(2\right)\)
\(z^2+x^2\ge2xz\) \(\Rightarrow\) \(\frac{z+x}{z^2+x^2}\le\frac{z+x}{2xz}\) \(\left(3\right)\)
Cộng từng vế của \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) ta được \(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\le\frac{x+y}{2xy}+\frac{y+z}{2yz}+\frac{z+x}{2xz}=\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}+\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}\)
\(\Leftrightarrow\) \(P\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\)
Dấu \("="\) xảy ra khi và chỉ khi \(x=y=z=\frac{3}{2015}\)
Vậy, \(P_{max}=2015\) \(\Leftrightarrow\) \(x=y=z=\frac{3}{2015}\)
Tim cac so nguyen duong x;y;z thoa man x!+y!=10.z+9
tim cac so nguyen nuyen duong x,y,z biet rang :
x^3-y^3 -z^3 =3xyz va x^2 =2(y+z)
1. tim cac cap so nguyen duong (x, y) sao cho:
2 x3 + xy = 11
2. tim cac cap so nguyen duong (x, y, z)sao cho:
x + y + z = x*y*z
3. tim x thuoc z, biet;
|x| = -2003
|x| = |-2003|
minh dang can gap lam. chieu mai phai nop rui
tim cac so nguyen x,y,z biet :-6/12=x/8=-7/y=z/-18
Ta có :
\(\frac{-6}{12}=\frac{x}{8}=\frac{-7}{y}=\frac{z}{-18}=\frac{-1}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{-1}{2}\Rightarrow x=\left(-4\right)\\\frac{-7}{y}=\frac{-1}{2}\Rightarrow y=14\\\frac{z}{-18}=\frac{-1}{2}\Rightarrow z=9\end{cases}}\)
Vậy ...