Tính :
I = 1 x1 + 2 x2 + 3 x3 +...+ 100 x100
Giúp mik với các bn ơi ! Huhu
Cho các số x1,x2,x3 thỏa mãn x1-1/3=x2-2/2=x3-3/1 và x1+x2+x3=30 . Khi đó x1+x2-x2+x3=???
cho các số x1;x2;x3 thỏa mãn: x1 - 1/3 x2-2/2 = x3-3/1 và x1+x2+x3=30 . khi đó x1.x2-x2.x3 = ?
x1 = 13 ; x2 = 10 ; x3 = 7
=> x1.x2-x2.x3=13.10-10.7=130-70=60
x1, x2, x3 là nghiệm phương trình x3-x-1=0. Tính giá trị biểu thức T= \(\frac{1+x1}{1-x1}\)\(+\frac{1+x2}{1-x2}\)\(+\frac{1+x3}{1-x3}\)
Mấy bạn giúp mik với
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow2+\frac{x+4}{2000}+\frac{x+3}{2001}=2+\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2001}+1\right)\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
Suy ra x+2004=0
\(\Leftrightarrow x=-2004\)
x1+x2+x3+...+x50+x51=0 và x1+x2=x3+x4=....=x47+x48=x49+x50=x50+x51=1. Tính x50
giúp mik nha mik đag cần gấp
Bài 1 : Cho a,b,c là các số hữu tỉ khác 0 sao cho a+b-c/c=a-b+c/b=(-a)+b+c/a
Tính giá trị của biểu thức A=(a+b).(b+c).(c+a)/abc
(LƯU Ý : DẤU / LÀ ...TRÊN.....)
Bài 2 : Cho x,x2,x3,x4,x5,x6 thỏa mãn :
(x2)^2=x1.x3
(x3)^2=x2.x4
(x4)^2=x3.x5
(x5)^2=x4.x6
Chứng minh rằng : x1/x6=(x1+x2+x3+x4+x5/x2+x3+x4+x5+x6)^5
Giusp mk vs nhé các bn !!!
Cho các số X1 , X2 , X3 , X4 thỏa mãn :
\(\frac{X1-1}{3}=\frac{X2-2}{2}=\frac{X3-3}{1}\)
Và X1 + X2 + X3 = 30
Bỏ x4 đi nhé bn
Theo t/c dãy tỉ số=nhau:
\(\frac{x_1-1}{3}=\frac{x_2-2}{2}=\frac{x_3-3}{1}=\frac{x_1-1+x_2-2+x_3-3}{3+2+1}\)\(=\frac{\left(x_1+x_2+x_3\right)-\left(1+2+3\right)}{6}=\frac{30-6}{6}=\frac{24}{6}=4\)
=>x1-1=4.3=12=>x1=13
x2-2=4.2=8=>x2=10
x3-3=4=>x3=7
Uk mik cảm ơn trong lúc chờ bạn thì mik giải được rồi nhưng dù sao cũng cảm ơn
Tìm các số x1, x2, x3, x4, x5. x6, x7, x8x, x9 biết x1-1/9=x2-2/8=x3-3/7=...=x9-9/1 và tổng các số đó x1,x2,x3,...,x9 bằng 90
Bài 1 : Tính
a, x(x2 + 5 )
b, (3x -5 )(2x + 1 ) - (6x2 - 5 )
c, ( 2x + 3)(2x - 3 ) - ( 2x + 1)2
d, ( 2x4 + x3 - 3x2 + 5x - 2 ) : ( x2 - x + 1 )
Bài 2 : phân tích các đa thức sau thành nhân tử
a, x3 - 2x2 + x
b, x2 - 2x - y2 + 1
Các bạn ơi ! giúp mik với !! Mai kiểm tra rồi
Bài 2 : phân tích các đa thức sau thành nhân tử
a, x3 - 2x2 + x
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
b, x2 - 2x - y2 + 1
\(=x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
vt mũ hộ mk đuy bạn :
\(x^3-2x^2+x\)
\(=x^3-x^2-x^2+x\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)\)
\(=x^2\left(x-1\right)-x\left(x-1\right)\)
\(=\left(x^2-x\right)\left(x-1\right)\)
\(b,x^2-2x-y^2+1\)
\(=\left(x^2-2x+1\right)-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1+y\right)\left(x-1-y\right)\)
Bài 1 :
a) \(x\left(x^2+5\right)\)
\(=x^3+5x\)
cho x1+x2+x3+...+x40+x50+x51
và x1+x2=x3+x4=...=x50+x49
tìm x51 nha các bn