tìm ƯC(2n+1;3n+1)
1. Tìm
a) ƯC ( 8 ; 10 ; 12 )
b) BC ( 10 ; 8 )
2. Tìm:
a) ƯC ( 2n ; 2n + 1 )
b) ƯC ( n ; n + 1 )
.
.
Tìm :
ƯC(2n+1,n+1)
ƯC(3n+2,N-1)
Gọi d là ƯCLN của 2n + 1 và n + 1
\(\Rightarrow\)2n + 1 \(⋮\)d và n + 1\(⋮\)d
\(\Rightarrow\)( 2n + 1 ) - ( n + 1 )\(⋮\)d
\(\Rightarrow\)( 2n + 1 ) -
Tiếp theo nhé
=> ( 2n + 1 ) - 2( n + 1 ) chia hết cho d
=> 2n + 1 - 2n - 2 chia hết cho d
=> - 1 chia hết cho d
Vậy : ƯCLN( 2n + 1, n + 1 ) = - 1
tìm ƯC [ n+1, 2n+1] n thuộc N
gọi ƯC ( n+1; 2n+1) là d nên n+1 chia hết cho d và2n+ 1 chia hết cho d. suy ra 2(n+1)=2n+2 chia hết cho d, suy ra
( 2n+2)-(2n+1)=2n+2-2n-1=1 chia hết cho d nên d=1( vì n thuộc N). vậy d=1
Sửa lại một chút cho dễ xem nhé!
G/s: \(d\inƯC\left(n+1;2n+1\right)\)
=> \(\hept{\begin{cases}n+1⋮d\\2n+1⋮d\end{cases}}\)
=> \(\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+1⋮d\end{cases}}\)
=> \(2\left(n+1\right)-\left(2n+1\right)⋮d\)
=> \(2n+2-2n-1⋮d\)
=> \(1⋮d\)
=> \(d=1\)
Vậy 1 là ƯC ( n+1; 2n +1)
mình mới tham gia nên chưa biết đánh kí hiệu toán học thế nào ạ
2. Tìm ƯC ( 2n + 5 ; n + 1 )
1. Tìm ƯC ( 2n + 5 ; n + 1 )
Tìm ƯC (2n+8;n+1)
gọi d là ước chung của 2n+8 và n+1
ta có 2n+8 chia hết cho d;n+1 chia hết cho d
vì n+1 chia hết cho d nên n chia hết cho d, 1 chia hết cho d
ta có (2n+8)-2x(n+1)
=(2n+8)-(2n+2)
=2n+8-2n-2
=8-2
=6
vậy ước chung của 2n+8 và n+1 là 6
tìm ưc của 2n +1 và 3n+ 1
Goi UC(2n+1;3n+1)=d
Ta co:+/2n+1 chia het cho d=>3(2n+1) chia het cho d
hay 6n+3 chia het cho d(1)
+/3n+1 chia het cho d=>2(3n+1) chia het cho d
hay 6n+2 chia het cho d(2)
Tu (1) va (2) =>(6n+3-6n-2) chia het cho d
=>1 chia het cho d
=>d la uoc cua 1
=>d thuoc tap hop 1;-1
=>tap hop uoc chung cua 2n+1 va 3n+1 la -1;1
Tìm các ƯC(2n+1;3n+1) với n thuộc N*
Gọi d là ƯC(2n+1;3n+1) (d thuộc N*)
=>2n+1 chia hết cho d=>6n+3 chia hết cho d
=>3n+1 chia hết cho d=>6n+2 chia hết cho d
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>ƯC(2n+1;3n+1)=Ư(1)={1}
Tìm ƯC ( 2n + 1 ; 3n + 1 ) n thuộc N
cảm ơn nhiu
ta gọi ƯC là k
3n+1 chia hêt cho k
2n +1 chia hết cho k
3n+1-2n-1 chia hết cho k
n chia hết cho k
nên ƯC là n
=> 2n+1 chia het cho d => 3.[2n+1] chia het cho d => 6n+3 chia het cho d
=> 3n+1 chia het cho d => 2.[3n+1] chia het cho d => 6n +2 chia het cho d
Khi do ta co: 6n+3-6n-2 chia het cho d
=> 1 chia het cho d
=> d thuoc U[1] ={ -1;1}
=> Do d thuoc N
=> d=1
Gọi d là ƯCLN ( 2n + 1 ; 3n + 1 )
2n + 1 chia hết cho d . Suy ra 6n + 3 chia hết cho d
3n + 1 chia hết cho d . Suy ra 6n + 2 chia hết cho d
(6n + 3) - ( 6n + 2 ) chia hết cho d
6n + 3 - 6n - 2 chia hết chó d
1 chia hết cho d suy ra d = 1
ƯC ( 2n + 1 ; 3n + 1 ) = 1