Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Kiều Oanh
Xem chi tiết
Thị Hồng Nguyễn
Xem chi tiết
Thị Hồng Nguyễn
Xem chi tiết
Nguyễn Thu Uyên
Xem chi tiết
Vương Tuyền
7 tháng 8 2017 lúc 18:32

Bằng nhau nha

Eliana Tran
Xem chi tiết
Hiếu
12 tháng 4 2018 lúc 20:54

Ta có : \(0< \frac{2017}{2018}< 1\) nên   \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)

\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)

Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)

Vậy B>A

Lưu Thiên Hương
Xem chi tiết
Phùng Minh Quân
12 tháng 4 2018 lúc 17:31

Ta có : 

\(A=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Vì : 

\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)

\(\frac{2018}{2018+2019}< \frac{2018}{2019}\)

Nên \(\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}\) ( cộng theo vế ) 

\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

Top 10 Gunny
12 tháng 4 2018 lúc 17:33

Mình thấy là A<B.

Tách A=2017+2018/2018+2019=2017/2018+2019 + 2018/2018+2019

Ta thấy từng số hạng của A lần lượt nhỏ hơn số hạng của B

=> A<B

Arima Kousei
12 tháng 4 2018 lúc 17:34

Ta có : 

\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)

\(\frac{2018}{2018+2019}< \frac{2018}{2019}\)

\(\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}\)

\(\Rightarrow\frac{2017+2018}{2018+2019}< B\)

\(\Rightarrow A< B\)

Chúc bạn học tốt !!! 

Son Go Ten
Xem chi tiết
Arima Kousei
10 tháng 4 2018 lúc 22:16

Ta có : 

\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)

\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)

\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)

\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)

\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)

\(\Rightarrow P>Q\)

Chúc bạn học tốt !!! 

Nguyễn Minh Vũ
10 tháng 4 2018 lúc 22:14

vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q

Vậy P<Q.

mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá

Ánh Hằng
10 tháng 4 2018 lúc 22:14

Đơn giản P < Q

Vì Nhìn sơ qua ta thấy tổng P gồm các phân số bé hơn 1

Tổng Q có 3 phân số lớn hơn 1

Cay keo ngot
Xem chi tiết
nguyễn tuấn thảo
27 tháng 6 2019 lúc 14:43

\(A=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)

\(\Rightarrow A=(1-\frac{1}{2017})+(1-\frac{1}{2018})+(1-\frac{1}{2019})\)

\(\Rightarrow A=3-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

\(\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)<\(\frac{3}{2017}\)<\(1\)

\(\Rightarrow A\)>\(3-1=2\)

\(B=\frac{2016+2017+2018}{2017+2018+2019}\)

\(\Rightarrow B=1-\frac{3}{6054}\)

\(\Rightarrow B=1-\frac{1}{2018}\)

\(B\)<\(1\);\(A\)>\(2\)

\(\Rightarrow A\)>\(B\)

Trọng Vũ
Xem chi tiết
Lê Gia Bảo
6 tháng 8 2017 lúc 9:18

Ta có : \(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)

Rõ ràng ta thấy : \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\) (1)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\) (2)

Từ (1)(2), suy ra :

\(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)

Vậy ......................

~ Học tốt ~

Lê Gia Bảo
6 tháng 8 2017 lúc 9:15

Ta có : \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)

\(=3+\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)

Vậy \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)