\(\frac{4^2.25^2+32.125}{2^3.5^2}\)
B=\(\frac{4^2.25^2+32.125}{2^3.5^2}\)
\(B=\frac{4^2.25^2+32.125}{2^3.5^2}\)
\(=\frac{\left(2^2\right)^2.\left(5^2\right)^2+2^5.5^3}{2^3.5^2}\)
\(=\frac{2^4.5^4+2^5.5^3}{2^3.5^2}\)
\(=\frac{2^3.5^2.\left(2.5^2+2^2.5\right)}{2^3.5^2}\)
\(=2.5^2+2^2.5\)
\(=2.25+4.5\)
\(=50+20=70\)
\(B=\frac{2^4.5^4+2^5.5^3}{2^3.5^2}=\frac{2^4.5^3\left(5+2\right)}{2^3.5^2}=2.5.7=70\)
rut gon : B= \(\frac{4^2.25^2+32.125}{2^3.5^2}\)
\(B=\frac{4^2.25^2+32.125}{2^3.5^2}=\frac{2^4.5^4+2^5.5^3}{2^3.5^2}\)
\(=\frac{2^4.5^3\left(5+2\right)}{2^3.5^2}=\frac{2^3.5^2.2.5.7}{2^3.5^2}=2.5.7=70\)
Rút gọn biểu thức: B = \(\frac{4^2.25^2+32.125}{2^3.5^2}\)
\(B=\frac{4^2.25^2+32.125}{2^3.5^2}\)
\(\Rightarrow B=\frac{2^3.5^3+2^5.5^3}{2^3.5^2}\)
\(\Rightarrow B=???\)
Để tính B bn rút gọn các số theo hàng chéo
VD : 2^3 (phân số) rút gọn vs 2^3 (mẫu số)
tíc mình nha
tính hợp lý
B=\(\frac{4^2.25^2+32.125}{2^3.5^2}\)
Trả lời :
\(B=\frac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}=\frac{\left(2^2\right)^2\cdot\left(5^2\right)^2+2^5\cdot5^3}{2^3\cdot5^2}=\frac{2^4\cdot5^4+2^5\cdot5^3}{2^3\cdot5^2}=\frac{2^3\cdot5^2\left(2\cdot5^2+2^3\cdot5\right)}{2^3\cdot5^2}\)
\(=2\cdot5^2+2^3\cdot5=2\cdot25+8\cdot5=50+40=90\)
\(B=\frac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}\)
\(B=\frac{2^4\cdot5^4+2^5\cdot5^3}{2^3\cdot5^2}\)
\(B=\frac{2^4\cdot5^3\left(5+2\right)}{2^3\cdot5^2}\)
\(B=\frac{2^4\cdot5^3\cdot7}{2^3\cdot5^2}\)
B = 2 . 5 . 7
B = 70
Không chắc =))
\(B=\frac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}\)
\(\Rightarrow B=\frac{\left(2^2\right)^2\cdot\left(5^2\right)^2+2^5\cdot5^3}{2^3\cdot5^2}\)
\(\Rightarrow B=\frac{2^4\cdot5^4+2^5\cdot5^3}{2^3\cdot5^2}\)
\(\Rightarrow B=\frac{2^3\cdot5^2\cdot\left(2\cdot5^2+2^2\cdot5\right)}{2^3\cdot5^2}\)
\(\Rightarrow B=2\cdot5^2+2^2\cdot5\)
\(\Rightarrow B=2\cdot25+4\cdot5\)
\(\Rightarrow B=50+20\)
\(\Rightarrow B=70\)
Tính hợp lý:
\(\dfrac{4^2.25^2+32.125}{2^3.5^2}\)
\(\dfrac{4^2.25^2+32.125}{2^3.5^2}=\dfrac{2^4.5^4+2^5.5^3}{2^3.5^2}=\dfrac{2^3.5^2\left(2.5^2+2^2.5\right)}{2^3.5^2}=2.5^2+2^2.5=50+20=70\)
Tính 4^2.25^2+32.125/2^3.5^2
\(\dfrac{4^2.25^2+32.125}{2^3.5^2}=\dfrac{2^4.5^4+2^5.5^3}{2^3.5^2}=\dfrac{2^4.5^3\left(5+2\right)}{2^3.5^2}=2.5\left(5+2\right)=10.7=70\)
Tính một cách hợp lí: \(\dfrac{4^2.25^2+32.125}{2^3.5^2}\)
\(\dfrac{4^2.25^2+32.125}{2^3.5^2}\)
\(=\dfrac{\left(2^2\right)^2.\left(5^2\right)^2+2^5.5^3}{2^3.5^2}\)
\(=\dfrac{2^4.5^4+2^5.5^3}{2^3.5^2}\)
\(=\dfrac{2^3.5^2\left(2.5^2+2^2.5\right)}{2^3.5^2}\)
\(=2.5^2+2^2.5\)
\(=2.25+4.5=50+20=70\)
\(\frac{4^6.2^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(\frac{4^2.25^2+32.125}{2^3.5^2}\)
rut gon bieu thuc sau : 4^2.25^2+32.125/2^3.5^2