Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
chi chăm chỉ
Xem chi tiết
alibaba nguyễn
26 tháng 8 2016 lúc 11:48

Đặt a = \(\sqrt{2010-x}\); b = \(\sqrt{x-2008}\)

Từ đó ta có a+ b= 2 (1)

Ta có x2 - 4018x + 4036083 = (x- 2008x) + (-2010x + 4036080) + 3 = - (x - 2008)(2010 - x) + 3

Từ đó PT <=> a + b = - ab + 3 (2)

Từ (1) và (2) ta có (a;b) = (1;1)

=> x = 2009

nguyễn quỳnh lưu
Xem chi tiết
Thắng Nguyễn
3 tháng 7 2017 lúc 13:00

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{2010-x}+\sqrt{x-2008}\right)^2\)

\(\le\left(1+1\right)\left(2010-x+x-2008\right)\)

\(=2\cdot\left(2010-2008\right)=2\cdot2=4\)

\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)

Lại có: \(VP=x^2-4018x+4036083\)

\(=x^2-4018x+4036081+2\)

\(=\left(x-2009\right)^2+2\ge2\)

Suy ra \(VT\le VP=2\) xảy ra khi \(VT=VP=2\)

\(\Rightarrow\left(x-2009\right)^2+2=2\Rightarrow x-2009=0\Rightarrow x=2009\)

Không Bít
Xem chi tiết
Kudo Shinichi
5 tháng 10 2019 lúc 16:28

Áp dụng BĐT Cauchy - Schwarz ta có :

\(VT^2=\left(\sqrt{2010-x}+\sqrt{x-2008}\right)^2\)

\(\le\left(1+1\right)\left(2010-x+x-2008\right)\)

\(=2.\left(2010-2008\right)=2.2=4\)

\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)

Lại có :

\(VP=x^2-4018x+4036083\)

\(=x^2-4018x+4036081+2\)

\(=\left(x-2009\right)^2+2\ge2\)

Suy ra \(VT\le VP=2\) nên xảy ra khi :
\(VT=VP=2\Rightarrow\left(x-2009\right)^2+2=2\Rightarrow x=2009\)

Chúc bạn học tốt !!!

Dương Ngọc Bảo Hân
Xem chi tiết
Lightning Farron
29 tháng 6 2017 lúc 22:26

Áp dụng BĐT Cauhy-Schwarz ta có:

\(VT^2=\left(\sqrt{2010-x}+\sqrt{x-2008}\right)^2\)

\(\le\left(1+1\right)\left(2010-x+x-2008\right)\)

\(=2\cdot\left(2010-2008\right)=2\cdot2=4\)

\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)

Lại có: \(VP=x^2-4018x+4036083\)

\(=x^2-4018x+4036081+2\)

\(=\left(x-2009\right)^2+2\ge2\)

Suy ra \(VT\le VP=2\) nên xảy ra khi

\(VT=VP=2\Rightarrow\left(x-2009\right)^2+2=2\Rightarrow x=2009\)

Dương Ngọc Bảo Hân
29 tháng 6 2017 lúc 22:13

giúp mik nhé

cần gấp lắm ạ

Hoang Hung Quan
30 tháng 6 2017 lúc 8:57

Giải:

Phương trình:

\(\sqrt{2010-x}+\sqrt{x-2008}\) \(=x^2-4018x+4036083\) \((*)\)

ĐKXĐ: \(\begin{cases}2010-x \geq 0\\x-2008 \geq 0\end{cases} \) \(\Leftrightarrow2008\le x\le2010\)

Áp dụng BĐT \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\) \(\forall a,b\) ta có:

\(\left(\sqrt{2010-x}+\sqrt{x-2008}\right)^2\) \(\le2\left(2010-x+x-2008\right)\) \(=4\)

\(\Rightarrow\sqrt{2010-x}+\sqrt{x-2008}\le2\left(1\right)\)

Mặt khác:

\(x^2-4018x+4036083=\left(x-2009\right)^2+2\ge2\left(2\right)\)

Từ \(\begin{cases}(1)\\(2)\end{cases} \) suy ra \((*)\) \(\Leftrightarrow VP=VT=2\)

\(\Leftrightarrow\left(x-2009\right)^2=0\Leftrightarrow x-2009=0\Leftrightarrow x=2009\)

Vậy phương trình có 1 nghiệm duy nhất là \(x=2009\)

JOKER_Võ Văn Quốc
Xem chi tiết
Hoàng Lê Bảo Ngọc
18 tháng 7 2016 lúc 10:27

Điều kiễn xác định của phương trình : \(2008\le x\le2010\)

Xét vế trái của phương trình và áp dụng bất đẳng thức Bunhiacopxki : \(\left(1.\sqrt{2010-x}+1.\sqrt{x-2008}\right)^2\le\left(1^2+1^2\right)\left(2010-x+x-2008\right)=4\)

\(\Rightarrow\sqrt{2010-x}+\sqrt{x-2008}\le2\)(1)

Xét vế phải của phương trình : \(x^2-4018x+4036083=\left(x-2009\right)^2+2\ge2\)(2)

Từ (1) và (2) ta có phương trình đầu tương đương với \(\hept{\begin{cases}\sqrt{2010-x}+\sqrt{x-2008}=2\\x^2-4018x+4036083=2\end{cases}\Leftrightarrow}x=2009\) (TMĐK)

Vậy phương trình có nghiệm x = 2009

Hiếu Cao Huy
Xem chi tiết
Lightning Farron
4 tháng 4 2017 lúc 21:33

đề sai à

Hiếu Cao Huy
Xem chi tiết
Phạm Quốc Đạt
4 tháng 4 2017 lúc 21:12

k biết

Hiếu Cao Huy
4 tháng 4 2017 lúc 21:16

tốt ghê ha

nếu vậy thì đừng trả lời

Thắng Nguyễn
4 tháng 4 2017 lúc 21:52

99,(9)% sai đề

phan tuấn anh
Xem chi tiết
Trần Đức Thắng
31 tháng 1 2016 lúc 22:10

(+) 2010>=x > y > 0 

=> \(\sqrt{x}+\sqrt{2010-y}>\sqrt{2010-x}+\sqrt{y}\left(loại\right)\)

(+) 0< x < y =< 2010

=> \(\sqrt{2010-x}+\sqrt{y}>\sqrt{2010-y}+\sqrt{x}\left(loại\right)\) 

(+) với x = y tm 

thay vào pt (1) giải pt 

Nguyễn Quang Thành
31 tháng 1 2016 lúc 22:13

Giải phưởng trình ra nhé

phan tuấn anh
31 tháng 1 2016 lúc 22:14

thắng ơi phải xét như vậy ak 

Đinh Diệp
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 6 2019 lúc 18:41

Phương trình có vô số nghiệm

Nếu thay \(\sqrt{y-2008}\) bằng \(\sqrt{y+2008}\) thì phương trình có bộ nghiệm duy nhất: \(\left(x;y;z\right)=\left(2010;-2007;3\right)\)