Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn phương ngân
Xem chi tiết
đào bảo ngọc
Xem chi tiết
Phúc Đức
11 tháng 5 2022 lúc 19:59

banhoeohoyeugianroi

Mori Rannnnnnnnnnnnnnnnn...
Xem chi tiết
Nguyen My Van
18 tháng 5 2022 lúc 15:42

\(B=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)

\(B=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\dfrac{49}{1}\)

\(B=\left(\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\right)+1\)

\(B=\dfrac{50}{50}+\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\)

\(B=50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)\)

\(\Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)}=\dfrac{1}{50}\)

Đặng Phương Anh
Xem chi tiết
phạm đoàn gia huy
26 tháng 1 2023 lúc 22:06

So sánh tổng : S = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 với 1/2

Nam Casper
26 tháng 1 2023 lúc 22:07

S=

=50/50+50/49+50/48+...+50/2

=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)

=50

P=

P=(1/49+1)+(2/48+1)+...+(48/2+1)+1

P= 50/49+50/48+....+50/2+50/50=1

vậy s/p = 1/50

nguyen huong giang
Xem chi tiết
Bexiu
17 tháng 3 2017 lúc 19:46

1+12=13

nguyen huong giang
17 tháng 3 2017 lúc 19:48

giup mih voi

Trần Phương Thảo
Xem chi tiết
Phúc Đức
11 tháng 5 2022 lúc 19:46

​cho P=1/2+1/3+1/4+...........+1/48+1/49+1/50 và Q=1/49+2/48+3/47+........+47/3+48/2+49/1bucminh

nguyen trong hieu
Xem chi tiết
Vũ Phương Linh
Xem chi tiết
Trần Thị Yến Vi
29 tháng 7 2015 lúc 20:45

Ax2=1x2/1x2x3+1x2/2x3x4+...+1x2/48x49x50

Ax2=1/1x2-1/2x3+1/2x3-1/3x4+...+1/48x49-1/49x50

Ax2=1/1x2-1/49x50

Ax2=1/2-1/2450

Ax2=1225/2450-1/2450

Ax2=1224/2450

A=1224/2450:2

A=1224/2450X1/2

A=1224/4900

A=306/1225

EnderDragon Boy
29 tháng 6 2017 lúc 7:53

Còn câu trả lời nào khác ko zậy !?!

   .....

Anhthai Nguyen
Xem chi tiết
Thanh Tùng DZ
20 tháng 5 2017 lúc 20:14

Q = \(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)

Cộng 1 vào mỗi phân số trong 48 phân số đầu, trừ phân số cuối đi 48, ta được :

Q = \(\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+1\)

Q = \(\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+1\)

Q = \(\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)

đưa phân số cuối lên đầu :

Q = \(\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}\)

Q = \(50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+...+\frac{1}{2}\right)\)

Q = 50 . A

Vậy \(\frac{P}{Q}=\frac{1}{50}\)