Tính
1)A=1×2×3+2×3×4+.....+48×49×50
2)B=1×2+2×3+3×4+......+49×50
tính các tổng sau
A=1*2+2*3+3*4+4*5+5*6+6*7...+49*50
B=1*50+2*49+3*48+...+49*2+50*1
cho p=1/2+1/3+1/4+…+1/47+1/48+1/49+1/50
q=1/49+2/48+3/49+…47/3+48/2+49/1
tính p/q
Cho \(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50};B=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
Tính giá trị của \(\dfrac{A}{B}\)
\(B=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(B=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\dfrac{49}{1}\)
\(B=\left(\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\right)+1\)
\(B=\dfrac{50}{50}+\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\)
\(B=50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)}=\dfrac{1}{50}\)
Tính S/P biết:
S = 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/49 + 1/50
P = 1/49 + 2/48 + 3/47 + ... + 48/2 +49/1
So sánh tổng : S = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 với 1/2
S=
=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50
P=
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50=1
vậy s/p = 1/50
Tinh ti so a/b
A= 1/2+1/3+1/4+.....+1/48+1/49+1/50
B= 1/49+2/48+3/47+.....+48/2+49/1
Cho S =1/2 +1/3 + 1/4+...+1/48+1/49+1/50
Và P = 1/49 + 2/48 + 3/47+...+ 48/2 + 49/1
Tính S / P
cho P=1/2+1/3+1/4+...........+1/48+1/49+1/50 và Q=1/49+2/48+3/47+........+47/3+48/2+49/1
cho S = 1/2+1/3+1/4+...+1/49+1/50 và P = 1/49 +2/48+3/47+...+48/2+49/1.
tính S/P
Tính A=1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+...+1/(48*49*50)
Ax2=1x2/1x2x3+1x2/2x3x4+...+1x2/48x49x50
Ax2=1/1x2-1/2x3+1/2x3-1/3x4+...+1/48x49-1/49x50
Ax2=1/1x2-1/49x50
Ax2=1/2-1/2450
Ax2=1225/2450-1/2450
Ax2=1224/2450
A=1224/2450:2
A=1224/2450X1/2
A=1224/4900
A=306/1225
Còn câu trả lời nào khác ko zậy !?!
.....
Cho P = 1/2 + 1/3 + 1/4 + ... + 1/48 + 1/49 + 1/50 và Q = 1/49 +2/48 +3/47 + ... + 48/2 + 49/1.
Hãy tính P/Q
Q = \(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)
Cộng 1 vào mỗi phân số trong 48 phân số đầu, trừ phân số cuối đi 48, ta được :
Q = \(\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+1\)
Q = \(\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+1\)
Q = \(\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)
đưa phân số cuối lên đầu :
Q = \(\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}\)
Q = \(50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+...+\frac{1}{2}\right)\)
Q = 50 . A
Vậy \(\frac{P}{Q}=\frac{1}{50}\)