Cho tam giac ABC vuong tai a , tia phan giac goc b cat ac tai d , ke DE vuong goc =BC
a. CMR : AB=DE
b.Ke BA giao DE tai K CM : DK = DC
c.So sanh DK VA EC
cho tam giac ABC vuong can tai A .ke AH vuong goc voi BC tai H,BD la phan giac goc B(D thuoc AC) tu D ke duong thang vuong goc BC cat BC tai E cat AB tai F.duong thang BD cat AH tai P,cat AE tai N a CM:CP la phan giac ACB b, so sanh DE va DF c,ke CM vuong goc AE tai M .CM:BN=AM
cho tam giac ABC vuong tai A, co AB=4, AC=5
a) Hay so sanh so do goc B va goc C cua tam giac ABC
b)tia phan giac cua goc ABC cat canh AC tai D. Ke DM vuong goc voi BC tai M chung minh tam giac ABM=tam giac MBD
c)Hai tia MD va BÂct nhau tai E . tia BD cat EC tai N . Chung minh goc BNC=90o
d) Goi K la trung diem cua DE . Chung Minh CK=3/4 EC
cho tam giac ABC vuong tai A .Tia phan giac cua B cat canh AC tai D .Tu D ve DE vuong goc voi BC(E thuoc Bc).Tia ED va tia BA cat nhau tai F.a.So sanh DA va DC;b.Chung minh BD vuong goc voi FC;c.Chung minh AE vuong goc voi FC
Cho tam giac ABC vuong tai A, tia phan giac goc B cat AC tai D. Ke AE vuong goc voi BD (E thuoc BD) , AE cat BC o K. Ke AH vuong goc voi BC . Goi I la giao diem cua AH va BD
a) CMR: DK vuong goc voi BC
b) IK // AC
cho tam giac ABC vuong can tai A .ke AH vuong goc voi BC tai H,BD la phan giac goc B(D thuoc AC) tu D ke duong thang vuong goc BC cat BC tai E cat AB tai F.duong thang BD cat AH tai P,cat AE tai N a CM:CP la phan giac ACB b, so sanh DE va DF c,ke CM vuong goc AE tai M .CM:BN=AM
cac ban giup minh vs minh dang can gap
cho tam giac ABC vuong tai A tia phan giac goc ABC cat AC tai D tu D ke DH vuong goc BC tai H va DH cat AB tai K
a; CM AD=DH
b; so sanh AD va DC
c; CM tam giac KBC can
a)xét 2 tam giác vuông ABD và HBD có:
BD(chung)
ABD=HBD(gt)
suy ra tam giác ABD=HBD(CH-GN)
suy ra BA=DH
xét tam giác ADK và HDC có:
BA=DH(cmt)
KAD=CHD=90
ADK=HDC(2 góc đđ)
suy ra tam giác ADK=HDC(c.g.c)
suy ra AD=AH
b)
ta có: tam giác DHC vuông tại H suy ra DC>AH mà AH=AD(theo câu a)
suy ra DC>AD
c)theo câu a, ta có tam giác ABD=HBD(CH-GN) suy ra BA=BH
theo câu a, ta có tam giác KAD=CHD(c.g.c) suy ra AK=AH
từ 2 điều trên suy ra AK+AB=BH+AH
suy ra BK=BC suy ra tam giác BCK cân tại B
a) Cách 1: Cm T.giác BAD=T.giác BHD(cạnh huyền-góc nhọn)=> AD=DH(2 cạnh tương ứng)
Cách 2: Vì D\(\in\) p/g góc B(Gt)=> DA=DH(tính chất điểm thuộc tia p/g của một góc)
b) Cm T.giác ADK= T.giác HDC(cạnh góc vuông(là hai cạnh AD=DH theo câu a.)-góc nhọn(hai góc đối đỉnh bằng nhau)=> DK=DC(hai cạnh tương ứng)
Vì DA vuông góc với BK(Gt)=> DK>DA(đường vuông góc nhỏ hơn mọi đường xiên)<=>DC>DA
c) T.giác KDC có DK=DC(b) nên t.giác DCK cân tại D(định nghĩa t.giác cân)
cho tam giac ABC vuong tai A , ve Cx vuong goc voi BC cat phan giac goc B tai F , BF cat AC tai E , CD vuong goc voi EF (D thuoc EF )
Keo dai BA va CD cat nhau tai S
a cmr goc ABC = goc ACF va CD la phan giac cua goc ECF
b cmr DE=DF , SE = CF
c cmr SE // CF , AE<EC
d ke DH vuong goc voi BC goi I la trung diem cua DH cmr BI vuong goc voi SH
CHO TAM GIAC ABC VUONG TAI A, DUONG CAO AH.TREN CANH BC LAY DIEM D SAO CHO BD=BA.DUONG VUONG GOC VOI BC TAI D CAT AC O E
A) SO SANH AE VA DE
B) CHUNG MINH TIA AD LA PHAN GIAC CUA GOC HAC
C) VE DK VUONG GOC VOIAC TAI K. CHUNG MINH RANG AK=AH
D) CHUNG MINH RANG AB+AC<BC+AH
cho tam giac ABC vuong tai A co AB =1/2 AC tia phan giac cua goc A cat BC tai D lay E la trung diem cua AC
a. chung minh DE =DB
b. AB cat DE tai diem K chung minh tam giac DCK can va la trung diem cua AK
c. AD cat CK tai H chung minh AH vuong goc voi CK
d. cho biet AB = 4 cm tinh doan DK
mong cac pn giai dum mh nhe