CMR : tồn tại 1 số tự nhiên có tất cả các chữ số bằng 1 chia hết cho 1993.
cmr tồn tại 1 số tự nhiên tất cả các chữ số bằng 1 chia hết cho 1993
từ các chữ số tự nhiên 1;2;3;4;5;6;7 lập tất cả các số tự nhiên có 7 chữ số khác nhau. cmr không tồn tại hai số nào được lập mà số này chia hết cho số kia.
(nhớ trình bày rõ nhé)
Từ 4 chữ số 1,2,3,4 lập tất cả các số tự nhiên có 4 chữ số . trong đó có tồn tại hai số nào mà 1 số chia hết cho số còn lại không
Ít nhất là nhìn thấy 3 cặp thỏa mãn:
4444 chia hết cho 1111
3333 chia hết cho 1111
2222 chia hết cho 1111
1) CMR tồn tại 1 số gồm toàn chữ số 6 chia hết cho 2003
2)CMR tồn tại hay không 1 số tự nhiên só tận cùng là 2002 chia hết cho 2003
3) Cho 2001 số bất kì.CMR có thể chonk 1 hoặc 1 số số mà tổng của chúng chia hết cho 2001
4) Trong 1 tam giác đều cạnh là 1.Ta đặt 17 điểm kể cả trên các cạnh.CMR tồn tai 2 điểm mà khoảng cách giữa chúng nhỏ hơn hoặc bằng 1/4
cho 19 số tự nhiên liên tiếp. CMR: tồn tại 1 số có tổng các chữ số chia hết cho 10
ghê đấy cũng biết hỏi bài cơ à
Chứng minh rằng tồn tại một số tự nhiên mà tất cả các chữ số của nó là 1 và số đó chia hết cho 2019
Bài 1: Cho 8 số tự nhiên có 3 chữ số. Chứng minh rằng trong 8 số đó, tồn tại 2 số mà khi viết liên tiếp nhau thì tạo thành 1 số có 6 chữ số chia hết cho 7
Bài 2: Cho 3 chữ số khác nhau và khác 0. Lập tất cả các số tự nhiên có 3 chữ số gồm cả 3 chứ số ấy. Chứng minh rằng tổng của chúng chia hết cho 6 và 37
Bài 3: Một học sinh viết các số tự nhiên từ 1 đến abc(có gạch trên đầu). Bạn đó phải viết tất cả m chữ số. Biết rằng m chia hết cho abc, tìm abc
Mọi người chi tiết hộ nhé, tks
Chia 1 số tự nhiên (trong 8 số đó) cho 7 ta thu được 1 số dư
⇒ Khi chia cả 8 số đó cho 7 ta sẽ thu được 8 số dư
Mà một phép chia cho 7 có thể dư 0; 1; 2; 3; 4; 5; 6
⇒ Có ít nhất 2 trong 8 số chia cho 7 thì cùng số dư
⇒ Hiệu 2 số đó chia hết cho 7
Gọi 2 số đó là và (0 ≤ a, b , c, d, e, f ≤ 9; a, d khác 0)
Không mất tính tổng quát, giả sử >
Ta có:
= 1000 +
⇔ = 1001 – +
⇔ = 7 . 143 . –
Vì 7 . 143 . chia hết cho 7 và chia hết cho 7 nên chia hết cho 7.
Vậy luôn tại 2 trong 8 số đó viết liền nhau tạo thành 1 số chia hết cho
tìm bốn chữ số 1,2,3,4 lập tất cả các số tự nhiên có bốn chữ số gồm cả bốn chữ số ấy. Trong các số đó , có tồn tại hai số nào mà một số chia hết cho các số còn lại