Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Mỹ Anh
Xem chi tiết
Shenkai
Xem chi tiết
Trần Đức Thắng
25 tháng 7 2015 lúc 14:54

(+) với p= 2 => p^2 + 44 không là sô nguyên tố 

(+) với p =  3 => p^2 + 44 = 9 + 44 = 53 là số nguyên tố :

(+) với p > 3 => p có dạng 3K+ 1 hoặc 3K + 2 ta có 

       (-) với p= 3k + 1  ta có : p^2 + 44 = ( 3k+ 1 )^ 2 +44 = 9k^2 + 6k + 1 + 44 = 9k^2 + 6k+ 45 = 3 ( 3k^2 + 2k  + 15 )chia hết cho 3 với mọi K 

       (+) p = 3k + 2 ta có : p^2 + 44 = (  3k + 2)^2 + 44 = 9k^2 + 6k + 4 + 44 = 9k^2 + 6k + 48 = 3 ( 3k^2 + 2k + 16 ) chia hết cho 3 với mọi k 

Nhữ Việt Hằng
Xem chi tiết
Lê Hoài Quỳnh Chi
Xem chi tiết
kebbya
Xem chi tiết
Châu Nguyễn Khánh Vinh
3 tháng 2 2016 lúc 19:56

vì 53 là số nguyên tố => p^2+44=53=>p^2=53-44=9=>p^2=3^2=>p=3

Hoàng Ngọc Lưu Ly
Xem chi tiết
Trịnh Tiến Đức
23 tháng 10 2015 lúc 10:24

Xét p=2

=> p2+44=22+44=4+44=48 (là hợp số , loại ) 

Xét p=3 

=> p2+44=32+44=9+44=53 ( là số nguyên tố , thỏa mãn ) 

Xét p>3 

=> p=3k+1;3k+2 ( k \(\in\)N*)

Với p=3k+1 

=> p2+44= (3k+1)2+44 = 3k(3k+1)+3k+1+44=3k(3k+1)+3k+45 = 3k.(3k+1+1)+45

Vì 3k.(3k+1+1) ; 45 chia hết cho 3

=> p2​+44 chia hết cho 3 (là hợp số , loại )

Voi p = 3k+2

=> p2+44 = (3k+2)2+44=3k(3k+2)+2.(3k+2)+44

= 3k(3k+2)+6k+4+44

= 3k(3k+2)+6k+48

Vi 3k(3k+2) ; 6k ; 48 deu chia het cho 3

=> p2+44 chia hết cho 3  (là hợp số , loại )

Vậy p=3 

Link Pro
Xem chi tiết
Công Chúa Họ Kim
Xem chi tiết
Xyz OLM
25 tháng 8 2019 lúc 7:25

9 Tìm số nguyên tố p sao cho : 

a) Nếu p = 2 

=> p + 16 = 2 + 16 = 18 (hợp số)

=> p = 2 (loại) 

Nếu p = 3 

=> p + 16 = 3 + 16 = 19 (số ngyên tố)

=> p + 38 = 3 + 38 = 41 (số nguyên tố)

=> p = 3 (chọn)

Nếu p > 3

=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)

Nếu p = 3k + 1

=> p + 38 = 3k + 1 + 38 = 3k + 39 = 3(k + 13) \(⋮\)3

=> p = 3k + 1 (loại)

Nếu p = 3k + 2

=> p + 16 = 3k + 2 + 16 = 3k + 18 = 3(k + 6) \(⋮\)3

=> p = 3k + 2 (loại)

Vậy p = 3

b) Nếu p = 2 

=> p + 28 = 2 + 28 = 30 (hợp số)

=> p = 2 (loại) 

Nếu p = 3 

=> p + 28 = 3 + 28 = 31 (số ngyên tố)

=> p + 44 = 3 + 44 = 47 (số nguyên tố)

=> p = 3 (chọn)

Nếu p > 3

=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)

Nếu p = 3k + 1

=> p + 44 =  3k + 1 + 44 = 3k + 45 = 3(k + 15) \(⋮\)3

=> p = 3k + 1 (loại)

Nếu p = 3k + 2

=> p + 28 = 3k + 2 + 28 = 3k + 30 = 3(k + 10) \(⋮\)3

=> p = 3k + 2 (loại)

Vậy p = 3

 c) Nếu p = 2 

=> p + 26 = 2 + 26 = 28 (hợp số)

=> p = 2 (loại)

Nếu p = 3 

=> p + 42 = 3 + 42 = 45 (hợp số)

=> p = 3 (loại)

Nếu p = 5

=> p + 26 = 5 + 26 = 31 (số nguyên tố)

=> p + 42 = 5 + 42 = 47 (số nguyên tố)

=> p + 48 = 5 + 48 = 53 (số nguyên tố)

=> p + 74 = 5 + 74 = 79 (số nguyên tố)

=> p = 5 (chọn)

Nếu p > 5

=> p = 5k + 1 hoặc p = 5k + 2 hoặc p = 5k + 3 hoặc p = 5k + 4 (\(k\inℕ^∗\))

Nếu p = 5k + 1

=> p + 74 = 5k + 1 + 74 = 5k + 75 = 5(k + 15) \(⋮\)

=> p + 74 là hợp số 

=> p = 5k + 1 (loại)

Nếu p = 5k + 2

=> p + 48 = 5k + 2 + 48 = 5k + 50 = 5(k + 10) \(⋮\)5

=> p + 48 là hợp số 

=> p = 5k + 2 (loại)

Nếu p = 5k + 3

=> p + 42 = 5k + 3 + 42 = 5k + 45 = 5(k + 9) \(⋮\)5

=> p + 42 là hợp số 

=> p = 5k + 3 (loại)

Nếu p = 5k + 4

=> p + 26 = 5k + 4 + 26 = 5k + 30 = 5(k + 6) \(⋮\)5

=> p + 26 là hợp số 

=> p = 5k + 4 (loại)

Vậy p = 5

10) a) Gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2

Ta có : a + a + 1 + a + 2 = 3a + 6 

                                       = 3(a + 2) \(⋮\)3

=> Tổng của 3 số tự nhiên liên tiếp là hợp số 

b) Gọi 3 số tự nhiên lẻ liên tiếp là : a ; a + 2 ; a + 4

=> Ta có : a + a + 2 + a + 4  = 3a + 6

                                             = 3(a + 2) \(⋮\)3

=> Tổng của 3 số tự nhiên lẻ liên tiếp là hợp số 

nguyễn tạo nguyên
Xem chi tiết
_Never Give Up_ĐXRBBNBMC...
18 tháng 4 2018 lúc 20:55

+, p=2 :

\(\Rightarrow p^2+44=4+44=48\) (hợp số loại)

+, p=3 :

\(\Rightarrow p^2+44=9+44=53\)(số nguyên tố thỏa mãn)

+, \(p>3\):

\(\Rightarrow\)p có dạng 3k+1;3k+2:                                       \(\left(k\inℕ^∗\right)\)

+,p=3k+1:

\(\Rightarrow\left(3k+1\right)^2+44=3n+1+44=3n+45⋮3\)(hợp số loại)

+, p=3k+2:

\(\Rightarrow\left(3k+2\right)^2+44=3m+1+44=3m+45⋮3\)(hợp số loại)                  \(\left(m;n\inℕ^∗\right)\)

Vậy p=3